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scheme that concurrently couples continuum and atomistic models of dynamic response
in solids. The formulation couples non-overlapping continuum and atomistic models
across sharp interfaces by weakly enforcing jump conditions, for both momentum balance
and kinematic compatibility, using Riemann values to preserve the characteristic structure
of the underlying hyperbolic system. Momentum balances to within machine-precision
accuracy over every element, on each atom, and over the coupled system, with small, con-

Keywords:
Multiscale modeling
Discontinuous Galerkin

Spacetime finite element trollable energy dissipation in the continuum region that ensures numerical stability.
Molecular dynamics When implemented on suitable unstructured spacetime grids, the continuum SDG model
Atomistic-continuum coupling offers linear computational complexity in the number of elements and powerful adaptive

analysis capabilities that readily bridge between atomic and continuum scales in both
space and time.

A special trace operator for the atomic velocities and an associated atomistic traction
field enter the jump conditions at the coupling interface. The trace operator depends on
parameters that specify, at the scale of the atomic spacing, the position of the coupling
interface relative to the atoms. In a key finding, we demonstrate that optimizing these
parameters suppresses spurious reflections at the coupling interface without the use of
non-physical damping or special boundary conditions.

We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions,
and describe an efficient iterative solution scheme that outperforms common explicit
schemes, such as the Velocity Verlet integrator. Numerical examples, in 1d x time and
employing both linear and nonlinear potentials, demonstrate the performance of the
SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time
steps and resolves atomic-scale signals in the continuum.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The majority of numerical methods used in materials simulations fall into one of two categories - those derived solely
from continuum theory and those derived from atomistic models. These disparate mathematical models represent different
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aspects of physical response associated with distinct scales in a given material. However, some physical phenomena involve
coupling across these scales and are not directly accessible to methods from either category alone. The goal of coupled atom-
istic-continuum (AtC) modeling is to address these more difficult problems by combining atomistic and continuum models
in a single simulation. The main challenge lies in finding an efficient coupling scheme that captures the interplay between
the models while avoiding numerical artifacts. The SDG-ADG method we introduce here uses novel methods that allow en-
ergy and momentum to flow freely between the component models, in both directions, as is required in non-equilibrium
problems.

1.1. Atomistic-continuum modeling

Atomistic methods typically employ molecular dynamics (MD) or Monte Carlo techniques. Many materials properties can
be computed atomistically with a computationally accessible number of atoms, where aspects of the bulk response, such as
temperature, particle density and strain state, are controlled by initial values and boundary conditions. However, atomistic
simulations are severely limited in the number of atoms that can be considered, the complexity of the atomic interactions
and the length of time that can be simulated due to the necessity of treating all atomistic degrees of freedom (d.o.f.). The
largest simulations use about a billion atoms, far too few to capture many complex phenomena encountered in real-world
materials behavior.

Continuum models typically use finite element, finite-volume or boundary integral methods. These are better suited to
model larger volumes of material and longer time intervals than atomistic methods because the number of d.o.f. in a discrete
continuum model can be varied to achieve a reasonable balance between computational cost and accuracy. Continuum cal-
culations succeed in a wide range of problems where homogenized or empirical models capture the micro-scale physics rea-
sonably well. However, they break down in situations where continuum theory is unable to capture the relevant material
behavior, such as when atomic-scale defects govern the response.

A number of AtC methods have been developed to address multi-scale problems, by combining the strengths of atomistic
and continuum methods. This section presents a selective review of existing AtC methods for solids that are relevant to our
present work, and we refer the reader to review articles [1-4] for a more complete discussion. It is useful to distinguish AtC
modeling problems where the objective is to model the detailed dynamics and kinetics of atomic-scale features, such as dis-
locations and phase boundaries, as they interact with larger-scale phenomena from those problems where the goal is to re-
place empirical continuum constitutive relations with relations derived directly from atomistic models. E and co-workers
[5,6] refer to these as type-A and type-B problems, respectively.

For type-B problems, it suffices to use hierarchical coupling between macroscopic continuum and microscopic atomistic
problems that coexist at a given location in the problem domain. State information from the macroscopic solution delivers
boundary conditions and constraints that drive the microscopic atomistic model, while flux and/or energetic information
from the microscopic solution provide constitutive information for the macroscopic problem. Depending on the time scales
and the number of parameters involved, hierarchical coupling may be either concurrent or serial. Concurrent coupling re-
quires the macro- and microscopic problems to be solved simultaneously, but under certain conditions, it is sufficient to
use serial coupling wherein the microscopic response is pre-computed and stored for use in subsequent macroscopic solu-
tions. Serially coupled AtC schemes include coarse-graining of the classical Hamiltonian through constraints [7] or renormal-
ization group methods [8]. Concurrently coupled methods include E and Engquist’s use of classical homogenization methods
in [5] and the computation of constitutive relations by sampling MD cells constrained to follow the continuum deformation,
as implemented with a finite-volume method by Li and E in [6] and a discontinuous Galerkin method by Wang et al. in [9].
Peridynamics theory models macroscopic continuum response with a non-local constitutive relation that mimics the inte-
grated effects of interatomic forces [10,11]. Although it is a continuum method, peridynamics presents an alternative to
type-B AtC models in some situations.

Type-A dynamic problems are more demanding because an effective coupling method must transfer momentum and en-
ergy between the atomistic and continuum models without spurious reflections or non-physical damping. Any atomic-scale
information that is not resolved by the continuum model must be accounted for, also without reflection.

Methods for type-A problems generally employ some form of domain decomposition, where a purely atomistic model
holds in one part of the problem domain and a macroscopic model governs elsewhere. The macroscopic model typically uses
the material parameters of a suitable continuum constitutive theory, presumably matched to the atomistic model, but a
type-B method may be employed instead (cf. [12,5]). Suitable conditions defined on an interface, in the form of either a sharp
boundary or an overlap region, provide the coupling between the models. Most authors define the domain decomposition a
priori, keeping the partition fixed throughout the simulation, but some propose adaptive methods to determine and adjust
the decomposition during the course of a simulation [6,13].

The construction of reflection-free interfaces is a major theme in the literature on AtC coupling methods for type-A prob-
lems. Most methods enforce some form of kinematic compatibility condition between the atomistic and continuum models
and remove fine-scale atomistic modes to suppress spurious reflections. To date, this has been achieved through some form
of damping. One of the most popular approaches uses the generalized Langevin equation (GLE), a wave equation which
damps fine-scale modes in a manner consistent with the fluctuation-dissipation theorem (atomic-scale fluctuations dissi-
pate to an equilibrium state) [14-16]. The GLE-based methods, including the Bridging Scale Method (BSM) of Wagner and
Liu [17,13] and related non-reflecting boundary methods of others [18-20], employ time-history kernels to calculate the



B. Kraczek et al./Journal of Computational Physics 229 (2010) 2061-2092 2063

damping. The absorbing boundary approach of E and Huang [21,22] achieves similar ends by computing weighted averages,
over the current and previous time steps, for the displacements of atoms near the interface. A third approach is used in the
Bridging Domain Method (BDM) of Xiao and Belytschko [23], in which unresolved modes are damped by adjusting the atom-
istic velocities to match continuum-scale constraints.

1.2. Energy and momentum transport

Careful treatment of local transport of energy and momentum, within the component models and in both directions
across coupling interfaces, is essential in schemes intended for problems with full coupling between atomic-scale and con-
tinuum-scale dynamics. Typically, these problems are not in thermal equilibrium, so methods that use thermostats or damp-
ing to suppress spurious reflections are ill-suited to this particular modeling task.

As an example, consider atomic-scale phenomena in the neighborhood of a dynamically propagating crack tip, where de-
fects nucleate and generate localized heating and vibrations in response to far-field loads. The localized heating affects the
on-going crack propagation and defect kinetics, while defects interact with other defects through long-range strain fields and
through emission and scattering of fine-scale vibrations. When atomistically-modeled defects interact at a distance, a con-
tinuum zone must be introduced between them to obtain a tractable problem size. At the same time, the crack propagation
and defect kinetics interact with the far-field dynamics via bi-directional energy and momentum transfer. To meet this mod-
eling challenge, we require component continuum and atomistic methods that conserve energy and momentum, either
intrinsically or through adaptive error control, and a non-dissipative, non-reflective coupling method. Continuum models
that do not require dissipative limiters to suppress oscillations around sharp wavefronts are preferred.

It is commonly recognized that unsupported atomic-scale modes should be treated as thermal modes in the continuum
domain (see e.g., [7]), so several methods couple the atomic-scale modes to a continuum temperature field. The phonon
method of Karpov et al. [20] employs the GLE to damp all unresolved modes passing from the atomistic to the continuum
region. Thermal modes are transferred back to the atomistic domain through the random forcing term in the GLE, in a man-
ner consistent with the thermal-equilibrium assumption. Within the BDM [23], Xiao and Belytschko control the amount of
energy absorbed at the boundary according to computed temperature differences in the atomistic and continuum domains.
In their method for type-A problems, Li and E [6] match the temperature of atoms overlapping the continuum to the local
continuum temperature via use of a thermostat. While the latter two approaches allow for a non-uniform temperature field
in the continuum, they are similar to the phonon method of Karpov et al. in that only long-wavelength modes transport en-
ergy from the atomistic region to the continuum. Their use of damping or thermostats prevents all of these methods from
balancing energy and momentum between the atomistic and continuum models.

1.3. The SDG-ADG method

In this paper, we introduce the SDG-ADG method, a coupled AtC method for dynamic, type-A problems in solids that cou-
ples disjoint continuum and atomistic domains across a sharp interface. A common mathematical framework, shared be-
tween the continuum, atomistic and coupling-interface components, unifies the model. In contrast to previous methods,
where the coupling constraints are purely kinematic, the SDG-ADG formulation uses Riemann jump conditions on the cou-
pling interface to simultaneously enforce local momentum balance and kinematic compatibility while maintaining consis-
tency with causality (i.e., the coupling conditions preserve the characteristic structures of the continuum model and the
long-wavelength limit of the atomistic model). The data for the Riemann problem includes an atomistic traction field and
an atomistic trace operator that describe, respectively, effective momentum flux and velocity on the coupling boundary.
An energy-equivalent mapping of the atomistic tractions to discrete atomic forces closes the coupling model.

We model the continuum domain with the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics [24,25],
and for the atomistic region, we introduce a new time-discontinuous, spatially discrete version of the SDG method called the
Atomistic Discontinuous Galerkin (ADG) method. Each component method is unconditionally stable, features local momen-
tum balance properties and preserves characteristic structure within its domain; no limiters are required to suppress spu-
rious oscillations in the SDG continuum model; cf., for example, [9]. A high-resolution continuum solution and a detailed
specification of the atomic-scale system geometry suffice to suppress spurious reflections at the coupling interface. This con-
trasts with the reliance of other methods on damping as a means to suppress reflections.

In the following section, we formulate the continuum SDG, the atomistic ADG and the coupled SDG-ADG models for arbi-
trary spatial dimension, d € {1,2,3}. The SDG method can be used with a conventional implicit solver, but its most efficient
implementation uses a causality-based solver with computational cost that scales linearly with the number of spacetime ele-
ments [26-29] (examples in this paper demonstrate both solution strategies). The ADG model requires an implicit solve in
each time step. We present an iterative ADG solution method that scales linearly with the number of atoms and, for this
application, outperforms the explicit Velocity Verlet (VV) integrator, a popular choice for molecular dynamics codes [30].2

2 Following the MD literature, we refer to the method as “Velocity Verlet”. This numerical method is used in various fields under a variety of names (cf.
[31,32]).
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Combining the causality-based SDG solver in the continuum domain with the iterative solver in the atomistic region and on the
coupling interface, we obtain an overall AtC scheme with linear scaling properties.

A monolithic discontinuous Galerkin framework spans the continuum, atomistic and coupling parts of our model. This
enables precise enforcement of local balance properties between the component models and facilitates consistent selection
of bases and numerical quadrature schemes to support arbitrarily high-order SDG-ADG models with optimal convergence
rates. In contrast to finite-volume models, where the stencil expands as the order of accuracy increases, our SDG stencils
are compact and do not expand with increasing polynomial order. Spacetime adaptive meshing effectively bridges between
continuum and atomistic scales and allows efficient resolution of sharp pulses in the continuum model down to scales below
the physical limits of the continuum theory. Thus, in models at finite temperature, the separation of thermal and mechanical
response in the continuum can be based solely on physical considerations, rather than be dictated by limited numerical res-
olution in the continuum model. Our adaptive scheme restricts the spacetime mesh refinement to the trajectories of pulses
and other sharp solution features. This circumvents the increased computational expense and numerical error incurred by
methods that impose a uniform global time step over the spatial domain; cf. [33]. Some AtC methods, such as the BSM and
the BDM, use subcycling to enable longer time steps in the continuum domain, but these techniques do not match the linear
scaling properties, efficiency or accuracy of the adaptive SDG model.

The SDG formulation uses spacetime control volumes to develop the conservation laws, rather than the spatial control
volumes used in AtC methods based on finite-volume and spatial discontinuous Galerkin methods [6,9]. This difference sup-
ports unstructured partitions of the spacetime analysis domain that enable the scalable causal solution scheme and the
spacetime adaptive mesh refinement in the SDG model. Momentum balances to within machine precision and the energy
error is provably dissipative for each SDG continuum element and for each segment of the coupling interface. The (modified,
cf. Section 2.2.1) ADG model, on the other hand, conserves both momentum and energy for each atom over every time step to
within the accuracy of the force integration. Thus, the stability of the coupled model is guaranteed locally as well as globally.
It is feasible to reduce the continuum and coupling dissipation errors to the level of machine precision through the use of h-
or hp-adaptive analysis methods.

We introduce a new method for suppressing spurious reflections at the coupling interface that does not rely on damping,
time averaging or overlap between the continuum and atomistic zones. We demonstrate through simple models that, even
when the impedances of the continuum and atomistic models are perfectly matched and the continuum solution is fully re-
solved, spurious reflections will occur if the macroscopic description of the continuum boundary geometry and the micro-
scopic description of the atomic positions are chosen independently. The effect is similar to the reflections that occur when
an arbitrary gap is left between two identical chains of atoms. In a key finding, we show that proper registration of the cou-
pling interface with respect to the atomic positions suffices to virtually eliminate spurious reflections in our one-dimensional
model. The optimal registration can be pre-computed for a given AtC system, so that the optimization has minimal impact on
the overall solution cost. Thus, we realize significant reductions in algorithmic complexity and computational expense rel-
ative to methods that rely on time-history kernels to suppress spurious reflections. Overall, we obtain a reflection-free,
sharp-interface coupling model that does not disturb the balance of energy in the coupled system and that circumvents
the physical ambiguity and the smeared response that are inherent to overlapped models.

We present numerical results in Section 3 that demonstrate the accuracy and performance of the SDG-ADG method. In
particular, we study energy error and spurious reflectance as narrow pulses traverse a sharp continuum-atomistic interface
at zero temperature. The results indicate that spurious reflections diminish by several orders of magnitude when there is
proper registration between the coupling interface and the atoms. Additional examples illustrate advanced capabilities of
the SDG-ADG model, including nonlinear interatomic potentials, the causal SDG solution scheme and unstructured, adaptive
spacetime meshing.

Our numerical implementation is restricted to one spatial dimension (d = 1). However, the proposed coupling method, as
reflected in its formulation, is extensible to higher dimensions, and a numerical implementation for d > 1 is under develop-
ment. Our focus in this initial study is on reflection-free transmission of pulses in materials at zero temperature, so we do not
address the important issue of segregating thermal and mechanical modes at the coupling interface. We discuss prospects
for implementations in higher spatial dimensions, methods for treating thermal modes and other extensions of the SDG-
ADG method in Section 4.

2. Formulations of continuum, atomistic and coupled methods

The SDG method provides a consistent mathematical framework for formulation of the component continuum and atom-
istic models, as well as the AtC coupling strategy itself. The ADG method can be understood as the restriction of a continuum
SDG method to the set of discrete atomic positions, and our AtC coupling method weakly enforces the same jump conditions
on the coupling interface that apply on all interelement boundaries in the SDG method. Thus, we begin this section with a 3-
field SDG formulation for linearized elastodynamics, originally presented in [25], in which displacement, velocity and strain
appear as independent fields, and show that the 3-field formulation recovers the single-field displacement formulation pre-
sented in [24] when kinematic relations are enforced to eliminate velocity and strain as independent fields. We continue by
specializing the 3-field continuum method to a spatially discrete 2-field ADG method. We then present the SDG-ADG cou-
pling scheme, including the introduction of an atomistic trace operator that supports the construction of auxiliary velocity
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and traction fields on the boundary of the atomistic domain. We show that the SDG-ADG scheme balances linear and angular
momentum over individual elements and atoms while dissipating energy only in the continuum region and at the coupling
interface. The numerical dissipation is relatively small, and the amount of dissipation can be controlled through adaptive
analysis procedures.

2.1. The SDG method for continuum elastodynamics

The notions of causal and non-causal boundaries® play important roles in the SDG formulation. A causal spacetime boundary
is one for which all characteristic directions of the governing hyperbolic system have the same orientation relative to the
boundary. Thus, a causal boundary separates the spacetime dynamic domain of influence from the domain of dependence
for every point on the boundary. This asymmetric dependency structure has been used to construct efficient O(N) solution
schemes for SDG methods based on element-wise or patch-wise causal spacetime grids; see [24,28,26] for a more complete dis-
cussion. The causal portion of the piecewise smooth boundary of a spacetime region can be classified as inflow or outflow,
depending on whether the characteristic directions on that part of the boundary are all inward to or outward from the region.
Horizontal boundaries, i.e., those on which the time coordinate is uniform, are always causal. Any spacetime boundary that is not
causal is classified as non-causal. Thus, non-causal boundaries separate regions on which mutually-dependent solutions must
be computed simultaneously, a property that increases the solution expense. Vertical boundaries parallel to the time axis are
always non-causal. Non-vertical boundaries with non-uniform time coordinates are called inclined boundaries; these can be
either causal or non-causal. Inclined boundaries imply grid motion relative to the reference coordinate frame.

The SDG formulations in [24,25] support spacetime grids that contain any mix of horizontal, vertical and inclined bound-
aries. To support this level of generality, they use differential forms and the exterior calculus on manifolds to circumvent
certain technical problems that arise from the lack of a natural spacetime inner product in classical (non-relativistic)
mechanics. However, here we introduce certain simplifying assumptions to rule out inclined boundaries. This restriction
eliminates the need for the differential forms notation and allows us to use the more familiar tensor notation. It does not,
however, limit the applicability of the proposed coupling scheme, which is fully compatible with the general formulations
in [24,25]. The resulting simplified formulation suffices to develop the coupling model in full generality, since coupling inter-
faces are vertical. It supports all of the numerical results in this paper, with the exception of the results reported in Section
3.3 that highlight the efficient O(N) causal solution scheme and the powerful adaptive analysis capabilities that are possible
on fully unstructured spacetime grids. Please refer to [24,25] for a detailed description of the general continuum formula-
tions, which are the basis of our numerical implementation. The simplifying assumptions for the present development are:

e The spacetime domain is a cylinder defined as the Cartesian product of a time-independent spatial domain and a time
interval. Thus, the spacetime domain boundary has no inclined parts.

e We use partially-structured, spacetime grids that are defined as the Cartesian product of a time-invariant, possibly
unstructured partition of the spatial domain with a conventional partition of the analysis time interval. Thus, the elements
in the spacetime mesh have no inclined faces.

Although our spacetime formulation is general for any spatial dimension, d € {1,2,3}, we only present numerical results
for coupled AtC models with d = 1 in this paper. Accordingly, we present component expressions for the case d = 1 to sup-
port our numerical results and to exemplify the tensor formulation. Numerical results for pure continuum models with d = 2
can be found in [24-26]. Section 4 includes a discussion of the prospects for implementing the proposed coupling scheme in
up to three spatial dimensions.

2.1.1. Spacetime solution domain

Given a spatial domain, Dx C E¢ with coordinates x, for which E¢ is Euclidean d-space with covariant and contravariant
bases, {e;}", and {e'}?,, and an open time interval, T =]to, ty[C R with coordinate t, let D c E¢ x R with coordinates (X, t)
be the spacetime domain defined by D := Dy x Z. Let Px = {Qn }",,’1':1 be a regular partition of Dy into open space elements
Om, and let P; = {Z,}h_, be a partition of Z into open time intervals T, =]t, 1,t,[. Then P := [{Quum}m_,]h.; in which
Qunn) := Om X I, is a partition of D into MN spacetime elements.

We equip the boundaries of the spatial domains, 9Dy and 9Q,,, with outward unit normal vectors n, € E¢ and introduce
the unit vector in the positive time direction e;. Although no natural spacetime inner product exists for classical mechanics,
from here on we adopt the convention,

a-ee=e-a=0 Vael (1)
The boundaries of the spacetime domain and the spacetime elements are then equipped with unit normal vectors n as

follows:

3 Similar to space-like and time-like separation of events used in special relativity.
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Nylycop, V(X t) € 0Dx X I,
Ny eop = | € V(X,t) : X € Dy, t=ty, (2a)
—e V(X,t) : X € Dy, t=to,
HX‘xean V(x, t) € 8Qm X In;
n‘(x,r)eag(mn) =9 € V(X,t) : X €0Qn, t =ty (2b)
—e; V(X,t) : X € 0Qm, t =tn1.

The domain boundary is partitioned into non-causal, causal inflow and causal outflow parts, respectively, according to

OD" = 9Dy x I, (33)
oD% = {(x,t) € D : n(X,t) = —e}, (3b)
oD% = {(x,t) € D : n(X,t) = e;}. (3¢c)

A similar partition of the spacetime element boundaries 9Qny into Q) 893,”1) and 99, ,, applies. Fig. 1 shows the
spacetime domain, a typical spacetime element and the orientation of the normal vectors on their boundaries for the case
d=2.

2.1.2. Continuum fields and governing equations

We solve for up to three independent vector and tensor fields in E¢ on D: displacement u, velocity v and linearized strain E.
In particular, our continuum model uses either a 1- or 3-field formulation involving {u} or {u, v, E}. The kinematic compat-
ibility relations for {u,v,E} on D are

u-v=0, (4a)
symVv —E =0, (4b)

where for any field f, Vf and f denote the gradient with respect to spatial position x and the partial derivative with respect to
time. If the initial data impose compatible strain and displacement fields, then satisfaction of (4) implies satisfaction of the
strain-displacement relation, E = symVu, on D. From here on, we assume compatible initial data. Strong enforcement of (4)
delivers a reduced 1-field formulation in {u}.

All partial derivatives are distributional derivatives in this formulation, so they include a jump part wherever the under-
lying fields suffer a discontinuity. In the context of our discontinuous Galerkin formulation, all solution fields are assumed to
be continuous and suitably differentiable on the interiors of the spacetime elements. However, they might exhibit jumps
across the element boundaries. Therefore, enforcing (4) on D is equivalent to enforcing for every element O € P the system
(4) on the interior of Q with the additional jump conditions on 99Q:

(U —u)n-e| =0, (5a)
(V' =v)(1—|n-e]) =0, (5b)
(E°—E)n-e]=0. (50

The target values {u*,v* E"} are fields defined on 99, as specified below. They provide a unified framework for enforcing pre-
scribed boundary and initial data on D as well as solution-dependent values that preserve the characteristic structure
across element boundaries on the interior of D.

We strongly enforce the constitutive relations for linear elastic response to define the dependent fields, momentum den-
sity and stress, as

ol N

0Dy Ny n=—e

Fig. 1. Spacetime geometry for d = 2 of solution domain, D = Dy x Z, and typical element, Q(mn = Om x Zp.
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p=pv, (6a)

o = C(E), (6b)
where p is the mass density and C is the elasticity tensor. We also allow for an external body force per unit mass, b. The
equation of motion expresses localized momentum balance on D:

V-es—p+pb=0. (7)

Similar to the compatibility relations, it suffices for every element Q € P to enforce (7) on the interior of Q subject to the
additional jump condition on 99Q,

(6" —o)(m) — (p" —p)(n-€)=0 (8)

in which, according to (1), o(e;) = ¢*(e;) = 0.

Next we specify the target values to close the system. We partition the non-causal domain boundary according to
OD" = oD¥ U dD’; DY N oD’ = ), where DY and 9D’ are the prescribed-velocity and prescribed-stress boundaries, respec-
tively. The target values are then given by

wE p on 99,
u E,p ={ u",E",p* ondQ%\ oD", (9a)
a,Ep on 9Q N IDY,
v*t,6" on §Q%\ D4,
. v on 9Q N oD
Vo' = ,6 Q ) (9Db)
v,o on 9Q NaD’,
vR 6 on 9Q"™\ oD™
in which an undecorated quantity denotes the trace on 9Q from the interior of Q, a supercript ‘+’ denotes the trace on 9Q
from the interior of a spacetime element adjacent (in time or space) to Q, an overbar denotes prescribed initial or boundary
data on 9D, and a superscript ‘R’ denotes a solution-dependent Riemann value on the common boundary between Q and an
adjacent element.

Enforcing the jump conditions with respect to the Riemann values on non-causal boundaries preserves the characteristic
structure of the governing equations between elements. Let I'y; := 9Q;° N dQy° be the common boundary between spatially
adjacent elements Q, and Q;. The Riemann values are uniquely defined as functions of traces of solution fields from both
sides of I',; and are given in the Appendices of [24,25] for spatial dimensions d = 1,2 (see also Section 2.1.4).

Our formulation does not directly enforce local balance of energy, which is written as

&~V - [o(V)] — - pb =0, (10)

where & is the energy density,
1
Sozj[v-erE(a)}. (11)

The associated jump condition on 99 is
(&g —&)n-e)—v'-6'(m)+Vv-a(n)=0 (12)

in which the target values are computed according to (9).

2.1.3. Weighted residual and weak formulations

We next construct a finite element method based on momentum balance and kinematic compatibility. We obtain either a
3-field or 1-field formulation, depending on whether we strongly enforce the kinematic relations in (4). Let &/, V, £ be the
discrete SDG solution spaces for the independent fields u,v,E on D. Typically, these are piecewise-continuous spacetime
polynomials of a specified order that are continuous on the interior of every spacetime element Q € P, but that might suffer
jumps across the spacetime element boundaries. Let hy be the spatial diameter of element Q. We use the constant
ko = ||C||/h2, in which ||C|| is the operator norm of C, to maintain dimensional consistency.

Problem 1 (Three-field, weighted residual form). Find (u,v,E) € & x V x & such that for each Q € P

/Q{V-(V-afp+pb)+(vaE)(&)+kQ(i1—v)-ﬁ}dQ+ ;Qd{\’-(p*fp)+(E*—E)(&)—kQ(u*—u)-ﬁ}dz
+/ (V-0 o))+ (V' —V)-6m)}dZ =0 V(@,v,E)cUxVx & (13)
Oan

in which & = C(E) and where dQ and d= are the spacetime volume and surface differentials.
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Problem 1 can be divided into two subproblems that can be solved sequentially. The first subproblem, defined on V' x &, is
independent of the displacement solution. The second subproblem, defined on ¢/, can be solved in sequence using the veloc-
ity solution from the first subproblem. This sequential solution procedure is often advantageous in practice.

Integration by parts yields the weak form of the 3-field problem:

Problem 2 (Three-field weak form). Find (u,v,E) € &/ x V x € such that for each Q € P

/ [-V%(0) +¥-p+¥-pb v (V-5) + E(6) ~ ko(u- ﬁ+v.ﬁ)}d9+/ Vo' (n) + V' - 6(n)|dZ
Q aQne

+/ (V-p +E () — kou' -ﬁ)d2+/ (—¥-p—E(6) + kou-0)dZ =0 V(@,¥,E) et x V x £. (14)

agd 2Q

Strong enforcement of (4) and the implied relation E = symVu on the interiors of all elements Q € P reduces the 3-field for-
mulation to a 1-field model with v, p, ¢ and E dependent on the independent field u. The jump parts of the kinematic com-
patibility relations, (5), are not enforced a priori and are retained in the weighted residual statement below. The
interdependence of the weighting functions @, v and ¢ in the 1-field formulation can prevent the terms in the integrand
on §Q° from vanishing independently, an outcome that would invalidate the proof of element-wise momentum balance
in [24]. We circumvent this problem by modifying the weighting on the residual of the displacement jump condition. We
replace @ with w,, the projection of @ into the zero-energy subspace of u/, i.e., the subspace where @, =0 and
symVip = 0 on all elements Q € P (cf. [24]).

Problem 3 (One-field weighted residual form). Find u € ¢ such that for each Q € P

/QV-(V-afp+pb)dQ+/ {V-(6"—a)(n)+ (V' —V)-a(n)}dX

agn

+ [ (V- -p)+E —E)6) - ko(u —u)-U}dE =0 Vaecu (15)

Q¢

in which v = u and 6 = C(Va).
An integration by parts delivers the discrete, 1-field weak problem:

Problem 4 (One-field weak form). Find u € U such that for each 9 € P

/Q(—Vﬁ(a)+€"p+€"pb)d9+/ (V-6 () + (V' — V) - 6(n)}dZ

aQ™

+/ {V-p*+(E*7E)(&)ka(u*fu)-ﬁo}dzf/ v-pds=0 Vaecu (16)
099 09

in which v = 1 and ¢ = C(Va).

The three-field and one-field formulations both balance linear and angular momentum over each spacetime element
Q € P and are provably dissipative with respect to energy balance [24,25]. The latter property implies unconditional stabil-
ity, and the relatively small energy error is effectively controlled by the h-adaptive implementation described in [26,28], as
demonstrated in Section 3.3.

2.1.4. Specialization to 1dx time

Here we give the component forms of the 3-field and 1-field weak formulations for the case of an elastic rod, d = 1. These
are the specific models used in the numerical examples in Section 3. The volume and surface differentials, dQ and dX, are
here replaced by specific expressions in dx and dt. Dimensional consistency requires a cross-sectional area A in one-dimen-
sional models. We assume that A is uniform, and it is factored out in the statements below. The cross-section faces generate
the non-causal boundary, 9Q™ = A x I", where the spatial component of the outward normal vector is n, := n - e, in which
e, is the unit vector in the x-direction.

Problem 5 (Three-field weak form; d =1). Find (u, v,E) € U x V x £ such that for each 9 € P
/ [0+ ip + pb — 06, + E6 — ko(u + vil) dxdt +/
Q

(v + v*()')nxdt+/ (op* +E'6 — kou'ii)dx
Z}Q“C

Q¢

+/ (—ip — E6 + kouiddx = 0 V(@ #,E) e U x V x £. (17)
e
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Problem 6 (One-field weak form; d =1). Find u € U such that for each Q € P

/(—b,xa+ bp+i/pb)dxdr+/ (00" + (v — )Emde + | {09 + (E — E)G — ko' — u)ito}dx
Q

aQnc aQci

—/ pdx=0 Vieu (18)
aQCD

in which # = i and 6 = Cil,.

The target values are defined in (9), in which the Riemann values on the common boundary I',; between adjacent ele-
ments Q, and Qy are (cf. [24]):

1 oL C o o
vR:E{(v +v”)+6(0/’—a )nx}7 (199)
GR:%{(0“+J/‘)+%(Z//L v"‘)nf} (19b)

in which C is Young’s modulus, c is the elastic wave speed,

c=\/Clp (20)
and we have assumed uniform material properties in D. Superscripts « and f denote traces from the interiors of elements 9,
and Q; or the normal vector component on 9Q;°.

2.2. Time finite element method for molecular dynamics

Here we present a time integration scheme for molecular dynamics that derives directly from the above SDG formulation
for elastodynamics. We call this the Atomistic Discontinuous Galerkin (ADG) method, as it is a time-discontinuous Galerkin
finite element method for the spatially discrete atomistic initial value problem. This provides a unified mathematical frame-
work for our continuum and atomistic models and facilitates our subsequent development of the new AtC coupling strategy.
Such time discontinuous methods are not new, and are known to have good stability properties at the expense of dissipating
energy, as discussed in [34 and 35]. However, a simple modification of the ADG method eliminates numerical dissipation to
within the accuracy of the force integration. Although it is implicit, we demonstrate that the ADG method, when combined
with a suitable iterative solution scheme, outperforms the velocity Verlet method, a popular explicit integrator.

2.2.1. Atomistic Discontinuous Galerkin method

We identify the spacetime reference domain for the ADG formulation with the set of atoms, G = {7}, where we simulta-
neously use 7 to index the set of atoms and to denote the yth individual atom. The trajectory of atom 7 is described by the
displacement-velocity pair (u,,v,), where u, = X, — X, is the displacement of y from its reference position X, (here the equi-
librium position) to its current position x,, and v, is the velocity of y. We discretize the atomic trajectories with spatially-
uniform time intervals, Z, =]t,_1, t,[, where the discrete times t, define the partition of the overall time interval Z. Let U and
V denote the discrete ADG solution spaces for the atomic displacements and velocities, {(u,,v,)} € U x V, such that the
components are piecewise-continuous polynomials of specified orders that might suffer jumps at the discrete times {t,}.
The displacement and velocity histories on each open interval Z, are single-valued and require no special notation. However,
the solution can jump at the discrete times {t;}, so we use {(u}}, v[")}|,_, to denote the trace of the solution from interval Z,
at time t,,.

The spatially discrete ADG formulation can be derived from the continuum SDG model by representing the mechanics
fields as sums of Dirac delta functions centered on the atomic positions, as considered by Irving and Kirkwood [36], and
by dropping the strain and stress fields which have no direct atomistic counterparts. The continuum effects of the strain
and stress fields are replaced by their atomistic antecedents, the relative displacements of atoms and the non-local force
interactions between atoms (i.e., spatially discrete body forces). With this perspective in mind, we introduce the following
constitutive model in lieu of (6).

We assume that the potential energy of the atomistic system V'*** depends only on atomic positions, so that in the absence
of external forces it can be written in terms of the individual atomic displacements:

Ve (X} =V + V({w,}) (21)

in which V = V({X,}) is the total potential energy of the system in the reference configuration, chosen to be in static equi-
librium. Thus, the internal force acting on atom y is given by

F™ ({u,}) = Vi, V({u,}), (22)
while the momentum of atom 7 is given by

p, =m,v, (no sum) (23)
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in which m, is the mass of y. Let F,, the net force acting on atom y € G, be decomposed according to
F,=F" +F" (24)

in which Fe"t is the resultant of any external forces acting on 7. Then the governing equations of kinematic compatibility and
the equatlon of motion for each atom y € G reduce to
u,-v,=0, (25a)
F,-p, =0, (25b)

with jump parts at the start of each interval Z,, given by
n n-1
(o)
n-1 n
(or ' —p})

Following a procedure similar to the one for the continuum case, we introduce the dimensional factor, k, = *V/(9x,)*
and form a weighted residual statement for the ADG problem that weakly enforces (25) and (26).

=0, (26a)

t=tpq

-0. (26b)

=ty
|x7:x7»'

Problem 7 (ADG method: weighted residual form). Find the atomic trajectories {(u,,v;)} € U x V such that for each time
interval 7,

Z/ P +ky (1, — .},)-ﬁ.},}dt+z[V;}-(p;f"fpgf)Jrk (u —u 1) u'j]

=0 V{(,,v,)} €U x V.

t=thq

(27)

We integrate (27) by parts to obtain the weak problem statement.

Problem 8 (ADG method: weak form). Find the atomic trajectories, {(u,,v;)} € U x V, such that for each time interval Z,,
Z/ v, 4tV p, — k(v -0y uy ) ]dt+2<v P - kul u”)
+ Z (—v.}, Pl + kol ~u.},) .

Let ¢ be a time-independent vector field on Z,. Since (28) holds over Z, for all {(i,,v,)} € U x V, it must be true for all
weightings of the form, @, =0, v, = ¢ and u,, Vv, = 0 Vi#Y, for each atom 7 in turn in each time step. Consideration of
all such weightings implies balance of linear momentum for individual atoms and for the overall system to within the accu-
racy of the integral evaluations in each time step. Balance of angular momentum is not guaranteed for general, finite atomic
motions in this formulation. However, one could argue that angular momentum balances for infinitesimal atomic excursions
away from the equilibrium configuration, similar to the linearized theory of elastodynamics used in the continuum SDG for-
mulation. Nonetheless, the formulation is consistent, so that any imbalance in angular momentum can be controlled with
adaptive mesh refinement. For the overall system, linear momentum is conserved to within the accuracy of the linearized
theory if F ** = 0 and the potential V generates self-equilibrating internal forces so that >,F, =0.

t=ty_1

=0 V{(u,V,)}elxV. (28)

Energy analysis shows that the basic ADG method is guaranteed to be diffusive at the level of individual atoms and, there-
fore, stable. Setting v, = v,, &, = 0 and v,, @, = 0 for k7 in (28), we obtain after some manipulation,

2 (vimt) R AR TS (SARTS)

1 n-1 n-1
) (v7 P ) —t,. (29)
in which for any quantity f, [f]l,, :=f""l,, —f"l,. Since [v] - [p] = [v] - m[v] > 0, the ADG method is stable, and the last
term in (29) is the numerical dissipation over time step Z, associated with atom .

A simple modification of the ADG method allows the dissipation jump term in (29) to vanish, so that energy balances to
within the accuracy of the force integral evaluation. Specifically, we obtain per-atom energy and momentum conservation in
the ADG method by replacing the weighting functions , and v, in the integral of (27) with their 1? projections into subspac-
es containing polynomial functions of order p — 1, where pis the polynomial order of the parent spaces, Z/ and V. No pro-
jection is applied to the weighting functions that enforce the jump conditions at time t,_;. This modification relaxes the
weak enforcement of the governing equations in (27) to the minimum level required to support the proofs of momentum
and energy balance and forces the inflow jump conditions to vanish independently. Numerical dissipation is eliminated
and energy and momentum balance are exact to within the accuracy of the force integral evaluations (if an approximate
quadrature is used) or the machine precision, whichever is larger. In practice, it is most efficient to choose a numerical quad-
rature scheme that matches the accuracy of the force integration to the order of accuracy of the underlying ADG
discretization.

This modified ADG (mADG) method is closely related to the energy and momentum-conserving methods discussed by
Borri and Bottasso [35] and later by Gross et al. [37] and references therein, for conforming (time-continuous) Galerkin

=ty 4
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projections. As shown by Bottasso [38] (see also work by Hulme [39]), some classes of time finite element methods are
equivalent to symplectic implicit Runge-Kutta methods, which have been of great interest in the numerical integrator com-
munity (see e.g. [32,40]). Similar to what Borri and Bottasso found, but in contrast to the work by Gross et al., the discon-
tinuous basis and weak enforcement of temporal continuity of displacement and velocity (momentum) in the ADG
formulation are critical to its successful coupling with the SDG continuum model. Coupling the conforming models in
[37] to the efficient adaptive SDG solution scheme would destroy the energy and momentum balance properties.

2.2.2. Iterative solution procedure for the ADG method

The ADG model offers a number of attractive features: arbitrarily high-order accuracy with increasing polynomial order,
unconditional stability that supports arbitrarily large time steps, per-atom balance of momentum and energy to within the
accuracy of the force integration, and, in the present context, compatibility for coupling to the adaptive SDG continuum mod-
el. The ADG method is an implicit integrator, and due to the non-local force interactions between atoms, this implies that all
atoms must be solved simultaneously within each time step. The cost of solving simultaneous nonlinear equations for very
large systems of atoms is generally thought to outweigh the advantages of implicit models, and this explains the dominance
of explicit integrators in MD software.

We next introduce a simple iterative solution scheme for ADG models that scales linearly with problem size. Although
atomic force interactions are non-local, their range is limited in a computational setting by either an explicit cut-off radius
or by the distance beyond which their magnitudes fall below the machine precision (several lattice spacings in a typical solid
crystal). We exploit this property in the design of a simple iterative solution scheme in which the number of iterations re-
quired per time step is relatively small and independent of problem size. We show that this property, in combination with
other favorable properties inherent to the ADG model, yields an iterative implicit integrator that is competitive with the
Velocity Verlet (VV) method, a popular explicit integrator used in MD simulations. AtC coupling in solids requires accurate
modeling of mechanical pulses in both the continuum and atomistic domains. In this particular context, the iterative ADG
model clearly outperforms the VV method.

The iterative solution scheme begins with a non-disjoint partition of the atomistic spatial domain into a set of M over-
lapping regions called bins, {b,})_,. Each bin b, contains N, < N atoms, where N is the maximum bin size, and every atom
is in at least one bin. Due to the overlaps between bins, some atoms are in more than one bin. Atoms that fall on a bin bound-
ary are included in that bin. The width of overlap between bins must be at least equal to the effective cut-off radius for atom-
ic force interactions, and N is chosen small enough to ensure that a direct solve of the ADG equations for the atoms within
any single bin is not too expensive. In the case of solid crystals without diffusion, the assignment of individual atoms to bins
can be performed once at the start of a simulation and held fixed from there on.

At the start of each new time step, we extrapolate data from the previous step to generate an initial estimate of the solu-
tion for each atom in the current time step. Then we loop over the bins in what amounts to an overlapping block-Gauss-Sei-
del or multiplicative Schwarz iterative solution scheme [41]. For each current bin b,, we perform one Newton-Raphson
iteration for the ADG equations to update the solutions for the N, atoms in b,, while fixing the solutions for all the other
atoms in the system. In view of the bin-size limit N, a direct method is efficient for solving the bin-wise Newton updates.
We check convergence of the global ADG residual vector after each complete loop over the bins. We continue looping over
the bins until the norm of the residual vector vanishes to within machine precision.

The overlap between bins ensures that all atomic force interactions are included in at least one bin-level Newton update
during each loop over the bins. This hastens the propagation of information and dramatically reduces the number of itera-
tions required for convergence relative to schemes with non-overlapping bins. In contrast to large systems arising from ellip-
tic and parabolic models, where the number of Gauss-Seidel iterations required for convergence grows with problem size,
the hyperbolic structure of our problem, the finite cut-off radius for atomic force interactions and the finite wave speeds of
mechanical pulses in MD models limit the distance information must propagate in each time step before convergence is
achieved. Let n. be the number of loops over the bins required to attain convergence of the ADG model to within machine
precision. In practice, n; is relatively small and independent of problem size.

Although the implicit mADG formulation is unconditionally stable, the iterative solution scheme has a finite radius of
convergence that imposes a maximum time-step size. The use of overlapping bins significantly increases the method’s radius
of convergence relative to methods with non-overlapping bins. As demonstrated in numerical studies below, the iterative
solver’s radius of convergence is sufficiently large that the iterative mADG scheme competes effectively against the explicit
VV method.

We present numerical results for an example in one spatial dimension (extensions to higher dimensions are straightfor-
ward) to demonstrate the efficiency of the proposed iterative solution strategy. We consider a one-dimensional, periodic
chain containing 256 atoms with atomic spacing a. The time interval is (0,256). The atoms interact through a modified Len-
nard-Jones potential, U™, given by [40]

duY

U™(r) = U~ U(r) = (r—ro) | (30a)

UY(r) = 4e {(f) Y (?) T (30b)
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in which UY is the standard Lennard-Jones potential, r is the distance between any two atoms, r is the cut-off radius beyond
which atomic interactions vanish, R sets the potential length scale, € sets the potential depth and we enforce C' continuity at
r = r..* We choose a cut-off radius, r. = 2.5q, that includes up to second-nearest-neighbor force interactions between atoms.
The initial conditions for displacement and velocity correspond to a traveling pulse:
u(x7t){Bcos3(kxwt(/)) x<|%(¢‘>i§)|, 31)

0 otherwise

in which the parameter ¢ determines the initial position of the pulse. Here we prescribe the amplitude, B = a/40. We solve
with the iterative mADG integrator described in Section 2.2.1, so the energy balances to within the accuracy of the force inte-
gration for every atom in every time step.

We use the VV method as a reference explicit method to study the relative efficiency of the iterative mADG integrator. As
one might expect, the explicit VV method delivers weaker conditions for linear momentum balance than those obtained with
the implicit mADG method. It is easy to show that the VV method balances momentum globally over a system of atoms for
vanishing external forces [31]. However, in contrast to the ADG and mADG methodes, it generally does not balance momen-
tum for individual atoms, due to its use of averaged interatomic forces within each time step. The VV model also does not
offer the possibility of high-order accuracy, a feature that is available in (m)ADG models with variable polynomial order. Sta-
bility considerations limit the maximum step size. However, the VV integrator requires only one force evaluation per time
step, while the number of force evaluations in the iterative mADG method increases with polynomial order and depends on
the number of iterations per time step required to solve the implicit equations. Thus, for (m)ADG to compete against VV, we
must exploit the (m)ADG method’s unconditional stability by using larger step sizes and depend on the method’s high-order
accuracy to overcome the extra cost of multiple force evaluations per time step.

Since the evaluation of interatomic forces dominates the cost of MD simulations, we use the total number of force eval-
uations required to complete a simulation, denoted by N¢, as the measure of cost in our efficiency studies. An efficient inte-
grator reduces the ratio between some error measure and the cost N¢. A suitable choice of the error measure depends on the
nature and purpose of the simulation problem at hand. The error in global energy balance is a commonly used measure, but
taken alone, it is not sufficient in AtC coupling problems where the propagation of mechanical pulses is a central focus. Direct
measures of trajectory error and of the residuals of the governing equations can be more meaningful in these problems.
Therefore, we consider multiple error measures in this efficiency study.

First, we consider efficiency relative to the global energy error. Since there are no external energy sources, the total sys-
tem energy should be constant in time and equal to the energy determined by the initial data, Eo. We sample the energy of
the computed solution at N discrete times t;, and define the overall energy error as

N

i=1

where E; is the total energy at the sample time t;. Fig. 2 depicts the energy error versus the number of force evaluations for VV
and iterative ADG simulations with polynomial orders ranging from 1 to 5. We use the mADG model, so the dominant source
for energy error in the ADG results is quadrature error associated with the nonlinear interatomic forces. As the time steps
become shorter, the ADG errors attain their asymptotic convergence rates. For p > 2, the ADG errors drop below the VV error
at costs where the VV error ranges from 1077 to 102 and N¢ ~ 2050. This corresponds to a time-step size equal to one eighth
of the VV stability limit. Beyond this point, the energy errors for the higher-order ADG methods drop rapidly to machine-
precision levels, while the VV error decreases at a much slower rate. Although a normalized energy error smaller than
1077 might appear to be of no practical interest, we shall see that this level of accuracy for energy balance does not ensure
accurate renderings of propagating mechanical pulses.
We define normalized displacement and velocity error measures as

u-u V-V
€u = H _ ||Lz , €y = H _ ||Lz , (33)
([l (V]2

where U and V¥ are reference solutions and the L? norm is given by

1Ol = {Z LZ [/zn"z‘“m%‘ {Z /dr} (34)

Since no exact solution is available, we use the p = 5 mADG method with Dt = 0.0078125 (or 32,768 time steps) to generate
u and V. Figs. 3 and 4 show the normalized displacement and velocity errors as functions of the number of force evaluations.
In both cases, the mADG errors for p > 2 drop below the VV error at costs where the VV error still exceeds 1%, an error level

4 In general a C' truncation can be constructed by subtracting from the potential the first i + 1 terms of its Taylor series, expanded about the desired cut-off
radius. Afterward the potential depth can be re-scaled, as necessary.
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Fig. 2. Energy error €. versus cost N¢. Results are for Velocity Verlet (VV) algorithm and for iterative mADG (variable p) solution method with polynomial
order p. The time-step size at the left-most VV data point corresponds to one half the VV stability limit.
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Fig. 4. Normalized velocity error €, versus cost Ny for mADG (variable p) and VV methods.
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that is too large to reliably model effects of physical interest, such as dispersion of mechanical pulses. For larger values of p,
only a modest increment of cost is needed to reduce the error to machine-precision levels.

We introduce a normalized residual error measure to monitor how well the solution satisfies the equations of motion and
compatibility:

- [y -]

Fig. 5 shows the normalized residual error as a function of cost. Again, we see that the iterative mADG method with p > 2
equals or outperforms the VV algorithm in the range where the residual error is below 1%.

Overall, we conclude that the high-order mADG method, when implemented with an overlapping block-Gauss-Seidel
iterative solver, outperforms the VV algorithm for accuracy ranges of practical interest for AtC coupling problems in solids.
Furthermore, higher-order implementations of the ADG method outperform lower-order versions. The low-order (p = 1)
ADG method shows the same convergence rates as the VV algorithm, but in terms of efficiency, it underperforms VV due
to the increased cost of solving the implicit equations. However, ADG methods of all polynomial orders share a common
mathematical structure with the continuum SDG model that is critical to the success of our coupling strategy.

2.3. Dynamic response of coupled heterogeneous systems

We consider the dynamic behavior of heterogeneous coupled systems at zero temperature, comprised of some combina-
tion of continuum and atomistic zones. We focus on systems in which the impedances of the component models are
matched, so that the ideal response is zero reflectance at coupling interfaces, and examine the requirements for passing
waves across the interfaces without spurious reflections. We demonstrate through simple models that, in addition to match-
ing the impedances of the component models, the details of the coupling method itself must also be carefully selected to
avoid reflections. These studies motivate the sharp-interface AtC coupling model proposed in Section 2.4, in which spurious
reflections are effectively suppressed, without damping, by adjusting the position of the coupling interface relative to the
atomic positions.

2.3.1. Matching properties of the continuum and atomistic domains

Consider two linearly elastic rods with the same uniform, cross-section area that are coupled end-to-end, as in Fig. 6(a).
The condition for non-reflection of mechanical waves at the coupling interface is that the impedances of the materials in the
two rods be the same, where the impedance Z; of material i is the product of its mass density p; and wave speed c; [42].
Together with (20), this implies

\/'DZCQ = \/plCl. (36)

We seek to match the physical properties of the component domains in the atomistic—continuum system in Fig. 6(b), so we
employ the stronger condition that the wave speeds and mass densities are as close to one another as possible. This implies
that the impedances will be likewise matched. We use a coarse-grained mass density on the atomistic side to match the
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Fig. 5. Normalized residual error €, versus cost N;. The higher convergence rates of the implicit mADG method for p > 1 are evident, as is the improved
efficiency of higher-order mADG methods relative to the explicit VV method.
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(a)

Fig. 6. Representative coupled, heterogeneous systems for d = 1. (a) continuum-continuum system comprised of two elastic rods joined end-to-end, and
(b) atomistic—continuum system with unspecified coupling.

mass densities, as explained below. Matching the wave speeds is more difficult, since the atomistic wave speed is dispersive,
while the continuum wave speed is not.

The wave speeds in an atomistic system are obtained through its dispersion relation [43]. Consider a monatomic mass—
spring system with atomic mass m and uniform interatomic spacing a, interacting through linear springs out to the Sth-near-
est neighbor. The dispersion relation for this system is

Z Ksi (ksa) (37)

where K°® is the spring constant of the sth-nearest-neighbor spring and for a pure sine wave of frequency v and wavelength /.
in either an infinite or a periodic chain of atoms, w = 27v and k = 27/A. The phase velocity is the velocity of each Fourier
mode and is given by c* = w/k. In the long-wavelength limit, i.e., a < 4, the wave speed is

S
1 ZSZKS.
m
s=1

In many cases, the difference between the dispersive atomistic solution and the non-dispersive continuum solution is small,
and, as will be seen in the numerical examples, it is often sufficient to match the continuum wave speed to ¢'V. To match the
impedances of one-dimensional atomistic and continuum systems, as depicted in Fig. 6(b), we assign an effective cross-sec-
tion area A = A to the atomistic model, in which A is the cross-section area of the continuum domain (taken to be uniform
here for simplicity). The coarse-grained atomistic mass density, p* = m/(aA), combines with (38) to give the atomistic
impedance Z* as

(39)

After matching the impedances and mass densities of the atomistic and continuum systems, (39) completes the relationships
between the physical parameters of the one-dimensional continuum domain and the mass—spring system:

c=c", (40a)
m
S
_a 38K, (40c)
A s=1

where any two of these relations imply the third. These relations can be extended to address linear multi-atom interactions
when the continuum interacts with the atomistic region only in the low-frequency, long-wavelength limit, which is the lin-
ear portion of the acoustic branch of the dispersion relation [43].

Although system (40) does not hold, in general, for nonlinear material models, it is applicable to AtC systems character-
ized by nonlinear interatomic potentials if the loading amplitude is small enough to ensure that the motions of atoms suf-
ficiently removed from defects are limited to small oscillations about their reference positions [44]. Thus, we can reasonably
couple a linearly elastic continuum model and an atomistic model having a nonlinear potential, provided that any defects or
large-amplitude motions away from the reference configuration are kept within the atomistic domain and safely away from
the coupling interface. The continuum and coupling parameters can then be based on a linearized potential [45,18]. For non-
linear interactions where it is either impossible or undesirable to use a linearly elastic continuum model, another criterion
must be adopted to determine the bulk properties of the nonlinear continuum model, such as the widely-used Cauchy-Born
hypothesis [46,47].

To illustrate the extraction of spring constants from the linearization of a nonlinear potential, consider a chain of atoms
interacting through the Lennard-Jones potential (30) with reference positions {x, }, consistent with an undeformed, equilib-
rium lattice constant a = X,,; — X,. Linearizing the system about the reference configuration, we obtain the equivalent spring
constants between atoms ) and y +s,

K5 = o*UY jor? : (41)

=[xy 15 =X, |
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We note that K® is not affected by substituting U ™ for UY. We use the stationary potential energy condition to compute {x,}
and g, and apply (41) to obtain the spring constants, the first three of which are (K}.K?,K3) = (1.0,—0.00427, —0.00017) for
first, second and third-nearest neighbors of y, where € is specified such that Kl =1.0in su1table units of [energy]/[len,1_9;th]2
The longer-ranged springs have successively smaller, negative spring constants and will often fall outside the cut-off radius
imposed on the potential, so relatively few neighbors need to be included when determining C. Since the lattice parameter a
determines the relative positions of all pairs of atoms in the reference configuration of the chain, all of the spring stiffnesses
are fully determined by this single parameter and the potential UY.

2.3.2. Coupling heterogeneous systems with zero reflectance

Care must be taken when devising coupling strategies, as any inhomogeneity in the overall system due to the coupling
scheme itself will induce spurious reflections. In particular, we demonstrate that the atomic positions in any atomistic com-
ponent of a coupled heterogeneous system must be carefully registered with respect to the geometry of neighboring com-
ponents to avoid spurious reflections. Apparently, this atomic-scale registration is either ambiguous or left to chance in
previous AtC coupling strategies. The following studies motivate, in part, the SDG-ADG coupling strategy described in Sec-
tion 2.4 in which spurious reflections are suppressed, without damping and without invoking special boundary conditions,
solely by adjusting the positions of continuum boundaries relative to the positions of atoms in adjacent atomistic domains.

To illustrate the importance of proper registration between adjacent domains, we consider coupling between a pair of
distinct monatomic, uniform mass-spring systems, each interacting through first-nearest-neighbor springs. The physical
parameters for system i are the number of atoms |G;|, the lattice constant a;, the effective area A;, the atomic mass m; and
the spring constant K;. Rather than specify K; directly, it suits our purposes to instead specify F;, the spring force at 100%
coarse-grained strain, so that K; = F;/a;. For R := a; /a, and A; = A, = A, the two systems will have the same coarse-grained
mass densities, p; = m;/(a;A;), and the same long-wavelength wave speeds, ¢!, if

1
my = Em1, (42a)
Fz = F] pe K2 = RK1 (42b)

Eq. (42b) ensures that all springs carry the same force when the entire coupled system is subjected to a uniform strain state.
Without this constraint, it would be impossible to satisfy equilibrium at the coupling interface under static, constant-strain
conditions - a necessary, but not sufficient, condition for reflection-free coupling.

The paired mass-spring systems do not imply a unique means to specify the coupling. Possible coupling methods include
a coupling mass m, as represented in Fig. 7(a), and a coupling spring, characterized by lattice parameter a. and subject to

Fe=F =F,, (43)

so that the coupling spring constant is K. = F/a,, cf. Fig. 7(b). As shown in Fig. 8, arbitrary choices for a. or m. produce reflec-
tions at the coupling boundary that are qualitatively similar to reflections of a pulse off a knot in a string; they all vanish in
the long-wavelength limit [48].

If the interface is a feature of the coupling model, but not of the material we are representing, then the reflection is said to
be unphysical or spurious, and we seek some means to suppress it without otherwise disturbing the solution. For example,
suppose we start a traveling pulse in an otherwise quiescent domain 1, and let f be a time when the pulse has passed com-
pletely out of domain 1 into domain 2. Since domain 1 should return to a quiescent state at time £, minimizing the *-norm of
the atomic displacements in region 1 with respect to either m. or a. (with F. = F; = F, held fixed) is equivalent to minimiz-
ing the spurious reflection. Thus, the optimal coupling lattice parameter and coupling mass are given by

a; =argmin > 12| = w, (44a)
de 7€Gy t
. _m+ mz
“_ 2
m; = argmin > ou : 5 (44b)

7€6y

my Ky m K, m, K, m,

ey vy %
(a)

m; K, m K, m, K, m,

T vr
(b)

Fig. 7. Coupled monatomic mass-spring systems using (a) coupling mass m. and (b) coupling spring with constant K := F./a..
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some lower bound, on the order of the atomic spacing a, where the assumptions of continuum theory cease to be valid. In
practice, discretization error in numerical continuum models often renders some modes above this physical limit unresolv-
able. Using an adaptive implementation of the SDG model and an O(N) causality-based solution scheme in the continuum
zone, we are able to remove this limitation and resolve wavelengths all the way down to, and indeed below, the physical
limit of continuum theory. Thus, the decomposition into resolvable and unresolvable modes can be based on physical, rather
than numerical, criteria.

We focus on maintaining balance of momentum and energy within and between the component models and on suppress-
ing spurious reflections at the coupling interface without introducing non-physical damping. This avoids draining energy
from the unresolvable modes which should, in combination with thermal response in the continuum region, participate
in the overall energy balance of the coupled system. We use non-overlapping continuum and atomistic zones to enable pre-
cise treatment of the balance laws, and show that the coupled SDG-ADG model enforces momentum balance to within ma-
chine precision over individual atoms and elements as well as clusters of the same. The coupling model is dissipative, with
energy balance maintained to within the accuracy of the component methods. For now, we assume noise-free waveforms at
zero temperature under the assumption that all modes are resolvable in the continuum. Methods for distinguishing and
treating unresolvable modes are left for future research.

The main components of the coupling scheme are:

o A two-scale geometry model comprised of a macroscopic continuum region D, a non-overlapping atomistic zone populated
by a set of atoms identified by their reference positions, an atomic-scale coupling interface I' that separates the continuum
region from the atomistic zone, and atomic-scale offsets that define the position of I' relative to 9D at the scale of the
atomic spacing.

¢ An independent atomistic stress field on I' that models the momentum flux out of the atomistic zone.

e An atomistic trace operator that maps the discrete velocities of nearby atoms into a velocity field on I'. The trace operator
also generates an adjoint mapping of the atomistic stress field into discrete, work-equivalent forces acting on individual
atoms.

e Weak enforcement of jump conditions on I" that describe kinematic compatibility and momentum balance between the
traces of the continuum fields and the constructed atomistic stress and velocity fields. The jump conditions are written
with respect to target Riemann values, as in the SDG method, to preserve the common characteristic structure of the con-
tinuum equations and the long-wavelength limit of the atomistic equations.

Numerical results presented in Section 3 demonstrate that optimizing the atomic-scale geometry parameters in the
atomistic trace operator reduces spurious reflections at the coupling interface to negligible levels without resorting to
non-physical damping.

2.4.1. Geometry of the coupling model

Fig. 9 shows the spatial layout of the two-scale coupling model. The geometry of the continuum spatial domain Dy c E? is
defined using macroscopic continuum coordinates x. As before, the continuum boundary 0Dy is equipped with a unit out-
ward normal vector n, but it now has the disjoint partition, Dx = D} U dDg U dDg, in which 9Dy is the coupling part of
the continuum boundary that interacts with the atomistic model.

The atomistic region, with interatomic length scale g, is populated by a set of atoms G = {y} identified by their spatial
coordinates, X,. Although the atomistic region has no naturally-defined boundary, our coupling strategy nonetheless requires
a coupling interface, denoted by I'y, on which to construct effective atomistic stress and velocity fields that enter the cou-
pling jump conditions described below. The continuum coupling boundary 9D provides a natural basis for defining the cou-
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Fig. 9. Spatial geometry of atomistic-continuum coupling model for d = 2. An atomic-scale shift of the continuum coupling boundary 9Dy defines the
spatial atomistic coupling boundary I'y. A positive value of the shift ¢ indicates a normal perturbation outward from the atomistic zone.
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pling boundary, but the macroscopic coordinates that define 9Dy are not directly comparable to the atomic-scale coordi-
nates, X,. Therefore, we introduce an atomic-scale shift, 6 : 9D — R, where ¢ is comparable in magnitude to the atomic length
scale g, and define I'y = {X =y — dn(y) : y € 9D} so that coordinates x € I'y are directly comparable to the atomic positions
X,. The coupling boundary I'x serves as a proxy boundary for the atomistic region, so we equip it with a normal vector that
points outward from the atomistic zone: nr(y — on(y)) = —n(y) Vy € 9D. The values of the shift § are chosen to minimize
spurious reflections, as described in Section 2.4.3. Fig. 9 shows § as a uniform field, but in general it may vary with position
on JDy.

We again have the spatial partition of Dy into space elements: Px = {Qn}h_,, and the temporal partition of the analysis
interval 7 into time steps: P; = {Zn}l,;l:1- We generate the spacetime domain and spacetime mesh as the Cartesian products,
D=DxxZI, P=Pxx Pz, ' =IxxZ, and I', = I'x x T,,. While the time steps determined by P; must be taken as uniform
across all of the atoms, an unstructured partition of D can be useful, as exemplified in Section 3.3. The shift of the coupling
boundary to I' is only used in the trace operator for the atomistic velocity field (cf. Section 2.4.2), where I must be described
in consistent atomic-scale coordinates. Integrals that weakly enforce the coupling jump conditions, on the other hand, are
macroscopic in character, so for these we write

fx,t;np)dX = f(x,t;—n)d~. (45)

I'n oD

2.4.2. Atomistic stress field and velocity trace operator

This subsection describes the construction of the effective atomistic stress and velocity fields on the atomistic coupling
boundary that enter the coupling jump conditions described in Section 2.4.3. The atomistic stress, a second-order tensor field
on I’ denoted as 6%, represents the flux of linear momentum into the atomistic region due to its interaction with the con-
tinuum region.” It appears as an independent solution field in the SDG-ADG coupling model, with a piecewise-continuous poly-
nomial structure on I'. A momentum- and energy-conserving mapping from ¢ to discrete forces acting on individual atoms is
defined below.

The atomistic velocity field on I' is a dependent field written as

V(X ) =t (x; {v, (1)}, 0) (46)

in which tr* is the atomistic trace operator for velocity, and {v,(t)} denotes the velocities of the atoms in G at time t. The pri-
mary function of the trace operator is to construct a homogenized continuum velocity field on I" as a function of the discrete
atomic velocities. This allows us to write jump conditions, similar to those in the SDG formulation, that couple the contin-
uum and atomistic response. A secondary purpose is to provide a spatial filter that removes high-frequency modes associ-
ated with continuum thermal response from the atomistic velocity field on I'. Temporal filtering can also be introduced by
substituting time-averaged quantities for the unfiltered atomic velocities, {v,(t)}. However, we do not pursue either form of
filtering here, since we are concerned with systems at zero temperature where our goal is to pass the entire signal across the
coupling interface.

The construction of the atomistic trace operator involves a smooth and continuous atomic-scale fit, v(x, t), to the veloc-
ities of atoms near the coupling interface:

=D h®Vy(t), (47)

VeGr

where we require }, ; h,(X) =1 VX, and in which Gr C G is a specified collection of atoms in the vicinity of the coupling
interface, typically those w1thin the cut-off radius of the interatomic potential. Extrapolation and restriction to the coupling
interface I' completes the definition of the trace operator:

tr (%; {v, (1) },0) == VX, ) (5)- (48)

The position of I’ relative to the atoms varies with the shift parameter, so varying ¢ affects the action of the atomistic trace
operator.

The coupling stress ¢*' describes the momentum flux due to the action of the continuum region an the atomistic zone. We
need a mapping of ¢** into time-dependent forces acting on individual atoms, y € G, to close the model. Let F,, the net force
acting on atom 7 € G, be decomposed according to

F,=F"+F +F (49)

in which F‘"t is the force acting on 7 due to interatomic forces within the atomistic zone, as defined in (22), F is the coupling
force actmg on y derived from ¢ and due to interactions with the continuum region, and F, et is the resultant of any non-
coupling external forces acting on y. Clearly, F] = 0 for atoms y ¢ Gr. We require the couplmg forces to satisfy the work-
equivalence constraint,

5 If the coupling boundary is a vertical (material) interface, as we assume in this study, then we only require the normal component of the atomistic stress
field, i.e., a traction field on I'. However, for generality, we continue to use “stress” and ¢ to refer to this field.
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3 / v, Fdt = / vty dS V{V,} eV (50)
yeGr Y In I'n
in which v¥(x,t;0) = >°, ¢, hy (X)V,(t)| ;). After some manipulation, we find that (50) implies the mapping,
h,(x)e(nr)|,dx for y € Gr,
Fo:(t) — frx /( )G ( r)‘t Y ) r (51)
’ 0 otherwise

and that the coupling stresses ¢* and the coupling forces F;] deliver the same momentum input to the atomistic zone. Taking
{¥,} = {v,} in (50), we find that they also deliver the same energy input. The stresses ¢*' can be interpreted as Lagrange mul-
tipliers that enforce a holonomic kinematic compatibility constraint on I" [49].

Since the examples reported in Section 3 involve problems in 1d x time with smooth initial data (zero temperature), we
use one-dimensional Lagrange interpolation polynomials for h,(x). Thus, we write the n-atom trace as

V(1) = oy (t) (52)

veGr

in which fly := h,(X)|, are restrictions of Lagrange interpolation polynomials in x of degree n — 1, and where the set G con-
tains the n atoms nearest to I" (¢f. Fig. 10 in which I is at x = 0). Note that Lagrange interpolation polynomials satisfy

Z'yecrh"/‘ (X) =1Vx

2.4.3. Coupled SDG-ADG formulation
The SDG-ADG coupling strategy involves coupling Riemann values, ¢®¢ and v*¢, that depend on the traces of the continuum
stress and velocity fields on 9D and on ¢® and v ® on I (cf. (45)). The coupling Riemann values for d = 1 are

= % [(v + %) + g (0* — a)nx] , (53a)
oR = % {(o + o) + % (v - v) nx} (53b)

in which undecorated values », ¢ and ny refer to continuum traces and the spatial normal component on dD¢. The param-
eters c and C are impedance matched according to (40). Our numerical experience, as reported in the examples in Section 3,
suggests that Riemann values based on the long-wavelength limit of the atomistic model provide an adequate basis for cou-
pling continuum and atomistic response to general, complex wave forms.

We complete the coupling model by modifying the definition of the target values (9) in the SDG formulation to include
the coupling Riemann values on D¢, and by including the coupling forces F] in an augmented ADG model that includes the
auxiliary field ¢ and jump conditions for v and ¢ on I'. Specifically, we replace (9b) with

vi,et  on 9Qe\ oDY,
V.o on 0Q NoDY,

Vi,e'={V on 9Q NID’, (54)
v 6R¢ on 0Q N D",

vR 6®  on 0Q™\ oD™

use (49) and (51) in (25b), and append to the ADG formulation jump conditions for kinematic compatibility and momentum
balance on I':

(V' =v*)(1~|nr-e)=0, (55a)
(6* — o) (np)|. = 0 (55b)

at

v 0" )
0 4 o+a

1 1

T T
0+2a 0+3a
Fig. 10. Representation of the four-atom trace in the reference configuration with the coupling boundary I' at x = 0. A Lagrange polynomial is fit to the
velocities at time t of the four atoms nearest I'. The trace 2! is the restriction of the velocity interpolant to I'. Because the atomic positions are fixed relative
to one another, ¢ is the only free parameter available to minimize reflections; it alters the trace by moving I’ relative to the atoms.
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in which v* = v and ¢* = 6%¢. Then, combining the weak forms for the modified SDG and ADG methods, we obtain the weak
formulation of the coupled problem. Alternative methods, based on the weighted residual forms and/or the 1-field contin-
uum formulation, are also possible.

Problem 9 (Coupled SDG-ADG). Find the continuum solution (u,v,E) € ¢ x V x &, the atomic trajectories {(u,,v,)} € Uxy,
and the boundary traction field 6% € S such that for each3 Q ¢ P

/{fV\?(a)+\;'-p+\A'-pbfv-(V-&)+E(&)—kg(u-ﬁ+v-ﬁ)}d9+/ Vo' (n) +v* - a(n)] d=
Q

agne

+ / (V-p* +E(8) — kou' -w)dX + / (=v-p—E(6) + kou - 0)dX =0 V(@,V,E) e U x V x & (56)
Jagd Joge

t:tn:|

+ r (v =) 6 (np) + ¥ (o' — o) (np) }dt = 0 V({(,, ¥,)},6%) € (51 x 17) xS (57)

and for each time interval Z,

Z | /I n [V B,y = v, ko, ki e+ Z {(v P k)

+ (=Pl ul k)

t=thq

in which & = CE.

Next, we consider the momentum and energy balance properties of the coupled SDG-ADG formulation. First, we note that
the proofs that linear and angular momentum balance with respect to ¢* and p* to within machine precision on a per-ele-
ment basis in the uncoupled SDG method are unaffected by the modified target values in (54); cf. Section 2.1.3. The proofs of
per-atom balance of momentum with respect to the atomic forces {F,} in the uncoupled ADG method are similarly unaf-
fected by the redefinition of the net atomic forces in (49) and (51); cf. Section 2.2.1. We have also shown that the coupling
forces {F]} are momentum equivalent to the coupling stresses ¢* on I'. It only remains to show that 6% and the coupling
stresses ¢°' are momentum equivalent. Consideration of all atomic velocity weightings in (57) of the form,

v, = {c+ S(x,) foryeGr,

58
0 otherwise, (58)

with {,} = {0} and * = 0, leads to the desired result for an n-atom trace, if n > 1. Thus, the coupled SDG-ADG solution
balances linear and angular momentum overall, as well as on a per-element and per-atom basis.

The energy error across the coupling interface is due solely to discrepancies in the jump terms involving (vR¢, 6%¢) and
either (v, *) or the continuum traces (v,q). Since (v*,6*) on I" are energy-equivalent to ({v,}, {F}}) on the atoms, we
conclude that the coupling part of the SDG-ADG method has the same stability and energy dissipation properties as the com-
ponent SDG and ADG methods.

2.4.4. Determining the atomic-scale shift

Specific values for the atomic-scale shift 6 must be determined in the SDG-ADG coupling method. Our studies show that
large spurious reflections generally result when the macroscopic continuum geometry and the microscopic atomic positions
are specified independently. However, spurious reflections are virtually eliminated when the relative positions of the cou-
pling interface and the atoms are properly adjusted at the scale of the atomic spacing. The shift parameter § in the atomistic
trace operator closes the atomic-scale geometry model, which would be ambiguous and incomplete without it.

Ideally, 6 would be determined by a systematic procedure as an automatic part of the solution process. To date, however,
we rely on a heuristic procedure for determining ¢ as the value that minimizes spurious reflections in a test problem involv-
ing a pulse crossing an atomistic-continuum interface. The details of the calibration procedure are described, in the context
of concrete examples, as part of the numerical results presented in the following section. Typically, the optimal value of § is
sharply defined and easy to identify. Although the optimal value does depend on the number of atoms in the trace operator,
it is relatively insensitive to the shape of the pulse and the direction of wave travel (from atomistic to continuum or from
continuum to atomistic). Once a given model is calibrated, § can be set for all future runs with that model. Prospects for
a more systematic method for determining J are discussed in Section 4.

2.4.5. Iterative solution scheme for SDG-ADG method

We extend the overlapping block-Gauss-Seidel iterative solution scheme to address the coupled SDG-ADG system by
introducing a special coupling bin bc € {b,-}f“il such that G C bc. That is, we place all of the atoms involved in the atomistic
trace operator in a common bin. In the iterative solution process, solutions for the atoms in b¢ are updated simultaneously
with the continuum solution adjacent to the coupling interface. When a causal mesh is used to discretize the continuum, the
coupled update is localized to include only one layer of continuum elements along the coupling interface. The remainder of
the bins ({b;}", \ bc) are updated in the same manner as described in Section 2.2.2. For each time step, iterative updates are
performed until the solution to Problem 9 converges to within a specified tolerance.
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3. Numerical results

This section presents numerical results that demonstrate the effectiveness and the convergence properties of the SDG-
ADG coupling scheme as well as the details of a heuristic method for optimizing the shift parameter ¢ in the atomistic trace
operator. Unless otherwise noted, we use first-nearest-neighbor linear spring interactions in the atomistic model (second-
nearest-neighbor springs and the nonlinear Lennard-Jones potential are treated in some examples). All units are given in
terms of the atomistic quantities, a, K, F and ¢ = ¢™. In all cases, we match the mass densities of the component domains
and the wave speeds in the long-wavelength limit, so that the domains have the same impedance. One half of the problem
domain is comprised of continuum elements, the other half of atoms, with periodic boundary conditions and independent
coupling fields 22t and o at each AtC boundary. Thus, there is one coupling boundary at the center of the domain and one
that implements the periodic boundary condition. We again specify initial conditions for displacement and velocity corre-
sponding to a traveling pulse, as in (31), and we define the pulse width w as the support of the initial displacement data;
that is, w = 7/k. Adjusting the pulse width reveals a range of behaviors. A narrow pulse generates larger relative motion be-
tween adjacent atoms and stronger dispersive effects, while a broad pulse reduces the relative motion and the dispersion.

In this section, we fix the level of h- and p-enrichment in the SDG and ADG models in order to focus on the influence of
various physical model parameters on spurious reflections at the coupling interface. We choose element sizes and polyno-
mial orders to ensure sufficiently well-resolved solutions that discretization error has negligible impact on the coupling
model. Instead, we focus on the influence of parameters such as direction of wave motion, the pulse width, the value of
the shift parameter 6 and the number of atoms n participating in the trace operator for the atomistic velocity.

In Sections 3.1 and 3.2, we use the unmodified ADG model and the 1-field SDG method on a Cartesian-product spacetime
domain in 1d x time, as described in Section 2.1.1, with a constant time step Dt = 0.5a/c. The polynomial bases for the rect-
angular spacetime elements in the continuum domain are tensor products of polynomial bases in x and t. The ADG displace-
ments (velocities) are interpolated with cubic (quadratic) polynomials. The SDG displacement field is third-order in time and
fourth-order in space. The coupling boundary traction is also cubic in time. As we are interested in obtaining the best pos-
sible coupling between the atomistic and continuum methods, and in view of the adaptive SDG method’s ability to resolve
very small length scales, we set the spatial density of atomistic and continuum d.o.f. to be the same, giving the spatial diam-
eter h = 5a for the continuum elements.

3.1. Performance of the SDG-ADG coupling method

We consider a coupled SDG-ADG model with 20 continuum elements and 100 atoms and with pulses traveling in either
direction. The initial mechanical pulse starts at the center of the atomistic (continuum) domain and propagates to the center
of the continuum (atomistic) domain. We denote a pulse passing in this direction as A-C (C-A). For comparison purposes, we
also consider pure continuum and pure atomistic models for the same domain. Fig. 11 shows sample displacement profiles
for pure ADG, pure SDG and coupled 