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We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with
the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new
scheme that concurrently couples continuum and atomistic models of dynamic response
in solids. The formulation couples non-overlapping continuum and atomistic models
across sharp interfaces by weakly enforcing jump conditions, for both momentum balance
and kinematic compatibility, using Riemann values to preserve the characteristic structure
of the underlying hyperbolic system. Momentum balances to within machine-precision
accuracy over every element, on each atom, and over the coupled system, with small, con-
trollable energy dissipation in the continuum region that ensures numerical stability.
When implemented on suitable unstructured spacetime grids, the continuum SDG model
offers linear computational complexity in the number of elements and powerful adaptive
analysis capabilities that readily bridge between atomic and continuum scales in both
space and time.

A special trace operator for the atomic velocities and an associated atomistic traction
field enter the jump conditions at the coupling interface. The trace operator depends on
parameters that specify, at the scale of the atomic spacing, the position of the coupling
interface relative to the atoms. In a key finding, we demonstrate that optimizing these
parameters suppresses spurious reflections at the coupling interface without the use of
non-physical damping or special boundary conditions.

We formulate the implicit SDG–ADG coupling scheme in up to three spatial dimensions,
and describe an efficient iterative solution scheme that outperforms common explicit
schemes, such as the Velocity Verlet integrator. Numerical examples, in 1d� time and
employing both linear and nonlinear potentials, demonstrate the performance of the
SDG–ADG method and show how adaptive spacetime meshing reconciles disparate time
steps and resolves atomic-scale signals in the continuum.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The majority of numerical methods used in materials simulations fall into one of two categories – those derived solely
from continuum theory and those derived from atomistic models. These disparate mathematical models represent different
. All rights reserved.
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aspects of physical response associated with distinct scales in a given material. However, some physical phenomena involve
coupling across these scales and are not directly accessible to methods from either category alone. The goal of coupled atom-
istic–continuum (AtC) modeling is to address these more difficult problems by combining atomistic and continuum models
in a single simulation. The main challenge lies in finding an efficient coupling scheme that captures the interplay between
the models while avoiding numerical artifacts. The SDG–ADG method we introduce here uses novel methods that allow en-
ergy and momentum to flow freely between the component models, in both directions, as is required in non-equilibrium
problems.

1.1. Atomistic–continuum modeling

Atomistic methods typically employ molecular dynamics (MD) or Monte Carlo techniques. Many materials properties can
be computed atomistically with a computationally accessible number of atoms, where aspects of the bulk response, such as
temperature, particle density and strain state, are controlled by initial values and boundary conditions. However, atomistic
simulations are severely limited in the number of atoms that can be considered, the complexity of the atomic interactions
and the length of time that can be simulated due to the necessity of treating all atomistic degrees of freedom (d.o.f.). The
largest simulations use about a billion atoms, far too few to capture many complex phenomena encountered in real-world
materials behavior.

Continuum models typically use finite element, finite-volume or boundary integral methods. These are better suited to
model larger volumes of material and longer time intervals than atomistic methods because the number of d.o.f. in a discrete
continuum model can be varied to achieve a reasonable balance between computational cost and accuracy. Continuum cal-
culations succeed in a wide range of problems where homogenized or empirical models capture the micro-scale physics rea-
sonably well. However, they break down in situations where continuum theory is unable to capture the relevant material
behavior, such as when atomic-scale defects govern the response.

A number of AtC methods have been developed to address multi-scale problems, by combining the strengths of atomistic
and continuum methods. This section presents a selective review of existing AtC methods for solids that are relevant to our
present work, and we refer the reader to review articles [1–4] for a more complete discussion. It is useful to distinguish AtC
modeling problems where the objective is to model the detailed dynamics and kinetics of atomic-scale features, such as dis-
locations and phase boundaries, as they interact with larger-scale phenomena from those problems where the goal is to re-
place empirical continuum constitutive relations with relations derived directly from atomistic models. E and co-workers
[5,6] refer to these as type-A and type-B problems, respectively.

For type-B problems, it suffices to use hierarchical coupling between macroscopic continuum and microscopic atomistic
problems that coexist at a given location in the problem domain. State information from the macroscopic solution delivers
boundary conditions and constraints that drive the microscopic atomistic model, while flux and/or energetic information
from the microscopic solution provide constitutive information for the macroscopic problem. Depending on the time scales
and the number of parameters involved, hierarchical coupling may be either concurrent or serial. Concurrent coupling re-
quires the macro- and microscopic problems to be solved simultaneously, but under certain conditions, it is sufficient to
use serial coupling wherein the microscopic response is pre-computed and stored for use in subsequent macroscopic solu-
tions. Serially coupled AtC schemes include coarse-graining of the classical Hamiltonian through constraints [7] or renormal-
ization group methods [8]. Concurrently coupled methods include E and Engquist’s use of classical homogenization methods
in [5] and the computation of constitutive relations by sampling MD cells constrained to follow the continuum deformation,
as implemented with a finite-volume method by Li and E in [6] and a discontinuous Galerkin method by Wang et al. in [9].
Peridynamics theory models macroscopic continuum response with a non-local constitutive relation that mimics the inte-
grated effects of interatomic forces [10,11]. Although it is a continuum method, peridynamics presents an alternative to
type-B AtC models in some situations.

Type-A dynamic problems are more demanding because an effective coupling method must transfer momentum and en-
ergy between the atomistic and continuum models without spurious reflections or non-physical damping. Any atomic-scale
information that is not resolved by the continuum model must be accounted for, also without reflection.

Methods for type-A problems generally employ some form of domain decomposition, where a purely atomistic model
holds in one part of the problem domain and a macroscopic model governs elsewhere. The macroscopic model typically uses
the material parameters of a suitable continuum constitutive theory, presumably matched to the atomistic model, but a
type-B method may be employed instead (cf. [12,5]). Suitable conditions defined on an interface, in the form of either a sharp
boundary or an overlap region, provide the coupling between the models. Most authors define the domain decomposition a
priori, keeping the partition fixed throughout the simulation, but some propose adaptive methods to determine and adjust
the decomposition during the course of a simulation [6,13].

The construction of reflection-free interfaces is a major theme in the literature on AtC coupling methods for type-A prob-
lems. Most methods enforce some form of kinematic compatibility condition between the atomistic and continuum models
and remove fine-scale atomistic modes to suppress spurious reflections. To date, this has been achieved through some form
of damping. One of the most popular approaches uses the generalized Langevin equation (GLE), a wave equation which
damps fine-scale modes in a manner consistent with the fluctuation–dissipation theorem (atomic-scale fluctuations dissi-
pate to an equilibrium state) [14–16]. The GLE-based methods, including the Bridging Scale Method (BSM) of Wagner and
Liu [17,13] and related non-reflecting boundary methods of others [18–20], employ time-history kernels to calculate the
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damping. The absorbing boundary approach of E and Huang [21,22] achieves similar ends by computing weighted averages,
over the current and previous time steps, for the displacements of atoms near the interface. A third approach is used in the
Bridging Domain Method (BDM) of Xiao and Belytschko [23], in which unresolved modes are damped by adjusting the atom-
istic velocities to match continuum-scale constraints.
1.2. Energy and momentum transport

Careful treatment of local transport of energy and momentum, within the component models and in both directions
across coupling interfaces, is essential in schemes intended for problems with full coupling between atomic-scale and con-
tinuum-scale dynamics. Typically, these problems are not in thermal equilibrium, so methods that use thermostats or damp-
ing to suppress spurious reflections are ill-suited to this particular modeling task.

As an example, consider atomic-scale phenomena in the neighborhood of a dynamically propagating crack tip, where de-
fects nucleate and generate localized heating and vibrations in response to far-field loads. The localized heating affects the
on-going crack propagation and defect kinetics, while defects interact with other defects through long-range strain fields and
through emission and scattering of fine-scale vibrations. When atomistically-modeled defects interact at a distance, a con-
tinuum zone must be introduced between them to obtain a tractable problem size. At the same time, the crack propagation
and defect kinetics interact with the far-field dynamics via bi-directional energy and momentum transfer. To meet this mod-
eling challenge, we require component continuum and atomistic methods that conserve energy and momentum, either
intrinsically or through adaptive error control, and a non-dissipative, non-reflective coupling method. Continuum models
that do not require dissipative limiters to suppress oscillations around sharp wavefronts are preferred.

It is commonly recognized that unsupported atomic-scale modes should be treated as thermal modes in the continuum
domain (see e.g., [7]), so several methods couple the atomic-scale modes to a continuum temperature field. The phonon
method of Karpov et al. [20] employs the GLE to damp all unresolved modes passing from the atomistic to the continuum
region. Thermal modes are transferred back to the atomistic domain through the random forcing term in the GLE, in a man-
ner consistent with the thermal-equilibrium assumption. Within the BDM [23], Xiao and Belytschko control the amount of
energy absorbed at the boundary according to computed temperature differences in the atomistic and continuum domains.
In their method for type-A problems, Li and E [6] match the temperature of atoms overlapping the continuum to the local
continuum temperature via use of a thermostat. While the latter two approaches allow for a non-uniform temperature field
in the continuum, they are similar to the phonon method of Karpov et al. in that only long-wavelength modes transport en-
ergy from the atomistic region to the continuum. Their use of damping or thermostats prevents all of these methods from
balancing energy and momentum between the atomistic and continuum models.
1.3. The SDG–ADG method

In this paper, we introduce the SDG–ADG method, a coupled AtC method for dynamic, type-A problems in solids that cou-
ples disjoint continuum and atomistic domains across a sharp interface. A common mathematical framework, shared be-
tween the continuum, atomistic and coupling–interface components, unifies the model. In contrast to previous methods,
where the coupling constraints are purely kinematic, the SDG–ADG formulation uses Riemann jump conditions on the cou-
pling interface to simultaneously enforce local momentum balance and kinematic compatibility while maintaining consis-
tency with causality (i.e., the coupling conditions preserve the characteristic structures of the continuum model and the
long-wavelength limit of the atomistic model). The data for the Riemann problem includes an atomistic traction field and
an atomistic trace operator that describe, respectively, effective momentum flux and velocity on the coupling boundary.
An energy-equivalent mapping of the atomistic tractions to discrete atomic forces closes the coupling model.

We model the continuum domain with the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics [24,25],
and for the atomistic region, we introduce a new time-discontinuous, spatially discrete version of the SDG method called the
Atomistic Discontinuous Galerkin (ADG) method. Each component method is unconditionally stable, features local momen-
tum balance properties and preserves characteristic structure within its domain; no limiters are required to suppress spu-
rious oscillations in the SDG continuum model; cf., for example, [9]. A high-resolution continuum solution and a detailed
specification of the atomic-scale system geometry suffice to suppress spurious reflections at the coupling interface. This con-
trasts with the reliance of other methods on damping as a means to suppress reflections.

In the following section, we formulate the continuum SDG, the atomistic ADG and the coupled SDG–ADG models for arbi-
trary spatial dimension, d 2 f1;2;3g. The SDG method can be used with a conventional implicit solver, but its most efficient
implementation uses a causality-based solver with computational cost that scales linearly with the number of spacetime ele-
ments [26–29] (examples in this paper demonstrate both solution strategies). The ADG model requires an implicit solve in
each time step. We present an iterative ADG solution method that scales linearly with the number of atoms and, for this
application, outperforms the explicit Velocity Verlet (VV) integrator, a popular choice for molecular dynamics codes [30].2
2 Following the MD literature, we refer to the method as ‘‘Velocity Verlet”. This numerical method is used in various fields under a variety of names (cf.
[31,32]).
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Combining the causality-based SDG solver in the continuum domain with the iterative solver in the atomistic region and on the
coupling interface, we obtain an overall AtC scheme with linear scaling properties.

A monolithic discontinuous Galerkin framework spans the continuum, atomistic and coupling parts of our model. This
enables precise enforcement of local balance properties between the component models and facilitates consistent selection
of bases and numerical quadrature schemes to support arbitrarily high-order SDG–ADG models with optimal convergence
rates. In contrast to finite-volume models, where the stencil expands as the order of accuracy increases, our SDG stencils
are compact and do not expand with increasing polynomial order. Spacetime adaptive meshing effectively bridges between
continuum and atomistic scales and allows efficient resolution of sharp pulses in the continuum model down to scales below
the physical limits of the continuum theory. Thus, in models at finite temperature, the separation of thermal and mechanical
response in the continuum can be based solely on physical considerations, rather than be dictated by limited numerical res-
olution in the continuum model. Our adaptive scheme restricts the spacetime mesh refinement to the trajectories of pulses
and other sharp solution features. This circumvents the increased computational expense and numerical error incurred by
methods that impose a uniform global time step over the spatial domain; cf. [33]. Some AtC methods, such as the BSM and
the BDM, use subcycling to enable longer time steps in the continuum domain, but these techniques do not match the linear
scaling properties, efficiency or accuracy of the adaptive SDG model.

The SDG formulation uses spacetime control volumes to develop the conservation laws, rather than the spatial control
volumes used in AtC methods based on finite-volume and spatial discontinuous Galerkin methods [6,9]. This difference sup-
ports unstructured partitions of the spacetime analysis domain that enable the scalable causal solution scheme and the
spacetime adaptive mesh refinement in the SDG model. Momentum balances to within machine precision and the energy
error is provably dissipative for each SDG continuum element and for each segment of the coupling interface. The (modified,
cf. Section 2.2.1) ADG model, on the other hand, conserves both momentum and energy for each atom over every time step to
within the accuracy of the force integration. Thus, the stability of the coupled model is guaranteed locally as well as globally.
It is feasible to reduce the continuum and coupling dissipation errors to the level of machine precision through the use of h-
or hp-adaptive analysis methods.

We introduce a new method for suppressing spurious reflections at the coupling interface that does not rely on damping,
time averaging or overlap between the continuum and atomistic zones. We demonstrate through simple models that, even
when the impedances of the continuum and atomistic models are perfectly matched and the continuum solution is fully re-
solved, spurious reflections will occur if the macroscopic description of the continuum boundary geometry and the micro-
scopic description of the atomic positions are chosen independently. The effect is similar to the reflections that occur when
an arbitrary gap is left between two identical chains of atoms. In a key finding, we show that proper registration of the cou-
pling interface with respect to the atomic positions suffices to virtually eliminate spurious reflections in our one-dimensional
model. The optimal registration can be pre-computed for a given AtC system, so that the optimization has minimal impact on
the overall solution cost. Thus, we realize significant reductions in algorithmic complexity and computational expense rel-
ative to methods that rely on time-history kernels to suppress spurious reflections. Overall, we obtain a reflection-free,
sharp–interface coupling model that does not disturb the balance of energy in the coupled system and that circumvents
the physical ambiguity and the smeared response that are inherent to overlapped models.

We present numerical results in Section 3 that demonstrate the accuracy and performance of the SDG–ADG method. In
particular, we study energy error and spurious reflectance as narrow pulses traverse a sharp continuum–atomistic interface
at zero temperature. The results indicate that spurious reflections diminish by several orders of magnitude when there is
proper registration between the coupling interface and the atoms. Additional examples illustrate advanced capabilities of
the SDG–ADG model, including nonlinear interatomic potentials, the causal SDG solution scheme and unstructured, adaptive
spacetime meshing.

Our numerical implementation is restricted to one spatial dimension ðd ¼ 1Þ. However, the proposed coupling method, as
reflected in its formulation, is extensible to higher dimensions, and a numerical implementation for d > 1 is under develop-
ment. Our focus in this initial study is on reflection-free transmission of pulses in materials at zero temperature, so we do not
address the important issue of segregating thermal and mechanical modes at the coupling interface. We discuss prospects
for implementations in higher spatial dimensions, methods for treating thermal modes and other extensions of the SDG–
ADG method in Section 4.
2. Formulations of continuum, atomistic and coupled methods

The SDG method provides a consistent mathematical framework for formulation of the component continuum and atom-
istic models, as well as the AtC coupling strategy itself. The ADG method can be understood as the restriction of a continuum
SDG method to the set of discrete atomic positions, and our AtC coupling method weakly enforces the same jump conditions
on the coupling interface that apply on all interelement boundaries in the SDG method. Thus, we begin this section with a 3-
field SDG formulation for linearized elastodynamics, originally presented in [25], in which displacement, velocity and strain
appear as independent fields, and show that the 3-field formulation recovers the single-field displacement formulation pre-
sented in [24] when kinematic relations are enforced to eliminate velocity and strain as independent fields. We continue by
specializing the 3-field continuum method to a spatially discrete 2-field ADG method. We then present the SDG–ADG cou-
pling scheme, including the introduction of an atomistic trace operator that supports the construction of auxiliary velocity
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and traction fields on the boundary of the atomistic domain. We show that the SDG–ADG scheme balances linear and angular
momentum over individual elements and atoms while dissipating energy only in the continuum region and at the coupling
interface. The numerical dissipation is relatively small, and the amount of dissipation can be controlled through adaptive
analysis procedures.
2.1. The SDG method for continuum elastodynamics

The notions of causal and non-causal boundaries3 play important roles in the SDG formulation. A causal spacetime boundary
is one for which all characteristic directions of the governing hyperbolic system have the same orientation relative to the
boundary. Thus, a causal boundary separates the spacetime dynamic domain of influence from the domain of dependence
for every point on the boundary. This asymmetric dependency structure has been used to construct efficient OðNÞ solution
schemes for SDG methods based on element-wise or patch-wise causal spacetime grids; see [24,28,26] for a more complete dis-
cussion. The causal portion of the piecewise smooth boundary of a spacetime region can be classified as inflow or outflow,
depending on whether the characteristic directions on that part of the boundary are all inward to or outward from the region.
Horizontal boundaries, i.e., those on which the time coordinate is uniform, are always causal. Any spacetime boundary that is not
causal is classified as non-causal. Thus, non-causal boundaries separate regions on which mutually-dependent solutions must
be computed simultaneously, a property that increases the solution expense. Vertical boundaries parallel to the time axis are
always non-causal. Non-vertical boundaries with non-uniform time coordinates are called inclined boundaries; these can be
either causal or non-causal. Inclined boundaries imply grid motion relative to the reference coordinate frame.

The SDG formulations in [24,25] support spacetime grids that contain any mix of horizontal, vertical and inclined bound-
aries. To support this level of generality, they use differential forms and the exterior calculus on manifolds to circumvent
certain technical problems that arise from the lack of a natural spacetime inner product in classical (non-relativistic)
mechanics. However, here we introduce certain simplifying assumptions to rule out inclined boundaries. This restriction
eliminates the need for the differential forms notation and allows us to use the more familiar tensor notation. It does not,
however, limit the applicability of the proposed coupling scheme, which is fully compatible with the general formulations
in [24,25]. The resulting simplified formulation suffices to develop the coupling model in full generality, since coupling inter-
faces are vertical. It supports all of the numerical results in this paper, with the exception of the results reported in Section
3.3 that highlight the efficient OðNÞ causal solution scheme and the powerful adaptive analysis capabilities that are possible
on fully unstructured spacetime grids. Please refer to [24,25] for a detailed description of the general continuum formula-
tions, which are the basis of our numerical implementation. The simplifying assumptions for the present development are:

� The spacetime domain is a cylinder defined as the Cartesian product of a time-independent spatial domain and a time
interval. Thus, the spacetime domain boundary has no inclined parts.

� We use partially-structured, spacetime grids that are defined as the Cartesian product of a time-invariant, possibly
unstructured partition of the spatial domain with a conventional partition of the analysis time interval. Thus, the elements
in the spacetime mesh have no inclined faces.

Although our spacetime formulation is general for any spatial dimension, d 2 f1;2;3g, we only present numerical results
for coupled AtC models with d ¼ 1 in this paper. Accordingly, we present component expressions for the case d ¼ 1 to sup-
port our numerical results and to exemplify the tensor formulation. Numerical results for pure continuum models with d ¼ 2
can be found in [24–26]. Section 4 includes a discussion of the prospects for implementing the proposed coupling scheme in
up to three spatial dimensions.
2.1.1. Spacetime solution domain
Given a spatial domain, Dx � Ed with coordinates x, for which Ed is Euclidean d-space with covariant and contravariant

bases, feigd
i¼1 and feigd

i¼1, and an open time interval, I ¼�t0; tN½� R with coordinate t, let D � Ed � R with coordinates ðx; tÞ
be the spacetime domain defined by D :¼ Dx � I . Let Px ¼ fQmgM

m¼1 be a regular partition of Dx into open space elements
Qm, and let PI ¼ fIngN

n¼1 be a partition of I into open time intervals In ¼�tn�1; tn½. Then P :¼ ½fQðm;nÞgM
m¼1�

N
n¼1 in which

Qðm;nÞ :¼ Qm � In is a partition of D into MN spacetime elements.
We equip the boundaries of the spatial domains, @Dx and @Qm, with outward unit normal vectors nx 2 Ed and introduce

the unit vector in the positive time direction et . Although no natural spacetime inner product exists for classical mechanics,
from here on we adopt the convention,
3 Sim
a � et ¼ et � a ¼ 0 8a 2 Ed: ð1Þ
The boundaries of the spacetime domain and the spacetime elements are then equipped with unit normal vectors n as
follows:
ilar to space-like and time-like separation of events used in special relativity.
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njðx;tÞ2@D ¼
nxjx2@Dx

8ðx; tÞ 2 @Dx � I ;
et 8ðx; tÞ : x 2 Dx; t ¼ tN ;

�et 8ðx; tÞ : x 2 Dx; t ¼ t0;

8><>: ð2aÞ

njðx;tÞ2@Qðm;nÞ
¼

nxjx2@Qm
8ðx; tÞ 2 @Qm � In;

et 8ðx; tÞ : x 2 @Qm; t ¼ tn;

�et 8ðx; tÞ : x 2 @Qm; t ¼ tn�1:

8><>: ð2bÞ
The domain boundary is partitioned into non-causal, causal inflow and causal outflow parts, respectively, according to
@Dnc ¼ @Dx � I ; ð3aÞ
@Dci ¼ fðx; tÞ 2 @D : nðx; tÞ ¼ �etg; ð3bÞ
@Dco ¼ fðx; tÞ 2 @D : nðx; tÞ ¼ etg: ð3cÞ
A similar partition of the spacetime element boundaries @Qðm;nÞ into @Qnc
ðm;nÞ; @Q

ci
ðm;nÞ and @Qco

ðm;nÞ applies. Fig. 1 shows the
spacetime domain, a typical spacetime element and the orientation of the normal vectors on their boundaries for the case
d ¼ 2.
2.1.2. Continuum fields and governing equations
We solve for up to three independent vector and tensor fields in Ed on D: displacement u, velocity v and linearized strain E.

In particular, our continuum model uses either a 1- or 3-field formulation involving fug or fu;v;Eg. The kinematic compat-
ibility relations for fu;v;Eg on D are
_u� v ¼ 0; ð4aÞ
symrv � _E ¼ 0; ð4bÞ
where for any field f ;rf and _f denote the gradient with respect to spatial position x and the partial derivative with respect to
time. If the initial data impose compatible strain and displacement fields, then satisfaction of (4) implies satisfaction of the
strain–displacement relation, E ¼ symru, on D. From here on, we assume compatible initial data. Strong enforcement of (4)
delivers a reduced 1-field formulation in fug.

All partial derivatives are distributional derivatives in this formulation, so they include a jump part wherever the under-
lying fields suffer a discontinuity. In the context of our discontinuous Galerkin formulation, all solution fields are assumed to
be continuous and suitably differentiable on the interiors of the spacetime elements. However, they might exhibit jumps
across the element boundaries. Therefore, enforcing (4) on D is equivalent to enforcing for every element Q 2 P the system
(4) on the interior of Q with the additional jump conditions on @Q:
ðu� � uÞjn � et j ¼ 0; ð5aÞ
ðv� � vÞð1� jn � etjÞ ¼ 0; ð5bÞ
ðE� � EÞjn � etj ¼ 0: ð5cÞ
The target values fu�;v�;E�g are fields defined on @Q, as specified below. They provide a unified framework for enforcing pre-
scribed boundary and initial data on @D as well as solution-dependent values that preserve the characteristic structure
across element boundaries on the interior of D.

We strongly enforce the constitutive relations for linear elastic response to define the dependent fields, momentum den-
sity and stress, as
Fig. 1. Spacetime geometry for d ¼ 2 of solution domain, D ¼ Dx � I , and typical element, Qðm;nÞ ¼ Qm � In .
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p ¼ qv; ð6aÞ
r ¼ CðEÞ; ð6bÞ
where q is the mass density and C is the elasticity tensor. We also allow for an external body force per unit mass, b. The
equation of motion expresses localized momentum balance on D:
r � r� _pþ qb ¼ 0: ð7Þ
Similar to the compatibility relations, it suffices for every element Q 2 P to enforce (7) on the interior of Q subject to the
additional jump condition on @Q,
ðr� � rÞðnÞ � ðp� � pÞðn � etÞ ¼ 0 ð8Þ
in which, according to (1), rðetÞ ¼ r�ðetÞ ¼ 0.
Next we specify the target values to close the system. We partition the non-causal domain boundary according to

@Dnc ¼ @Dv [ @Dr; @Dv \ @Dr ¼ ;, where @Dv and @Dr are the prescribed-velocity and prescribed-stress boundaries, respec-
tively. The target values are then given by
u�;E�;p� ¼
u;E;p on @Qco;

uþ;Eþ;pþ on @Qci n @Dci;

�u; �E; �p on @Q \ @Dci;

8><>: ð9aÞ

v�;r� ¼

vþ;rþ on @Qci n @Dci;

�v; r on @Q \ @Dv ;

v; �r on @Q \ @Dr;

vR;rR on @Qnc n @Dnc

8>>><>>>: ð9bÞ
in which an undecorated quantity denotes the trace on @Q from the interior of Q, a supercript ‘+’ denotes the trace on @Q
from the interior of a spacetime element adjacent (in time or space) to Q, an overbar denotes prescribed initial or boundary
data on @D, and a superscript ‘R’ denotes a solution-dependent Riemann value on the common boundary between Q and an
adjacent element.

Enforcing the jump conditions with respect to the Riemann values on non-causal boundaries preserves the characteristic
structure of the governing equations between elements. Let Cab :¼ @Qnc

a \ @Q
nc
b be the common boundary between spatially

adjacent elements Qa and Qb. The Riemann values are uniquely defined as functions of traces of solution fields from both
sides of C nc

ab and are given in the Appendices of [24,25] for spatial dimensions d ¼ 1;2 (see also Section 2.1.4).
Our formulation does not directly enforce local balance of energy, which is written as
_E0 �r � ½rðvÞ� � _u � qb ¼ 0; ð10Þ
where E0 is the energy density,
E0 ¼
1
2
½v � pþ EðrÞ�: ð11Þ
The associated jump condition on @Q is
ðE�0 � E0Þðn � etÞ � v� � r�ðnÞ þ v � rðnÞ ¼ 0 ð12Þ
in which the target values are computed according to (9).

2.1.3. Weighted residual and weak formulations
We next construct a finite element method based on momentum balance and kinematic compatibility. We obtain either a

3-field or 1-field formulation, depending on whether we strongly enforce the kinematic relations in (4). Let U;V; E be the
discrete SDG solution spaces for the independent fields u;v;E on D. Typically, these are piecewise-continuous spacetime
polynomials of a specified order that are continuous on the interior of every spacetime element Q 2 P, but that might suffer
jumps across the spacetime element boundaries. Let hQ be the spatial diameter of element Q. We use the constant
kQ ¼ kCk=h2

Q, in which kCk is the operator norm of C, to maintain dimensional consistency.

Problem 1 (Three-field, weighted residual form). Find ðu;v;EÞ 2 U � V � E such that for each Q 2 P
Z
Q

v̂ � r � r� _pþ qbð Þ þ rv � _E
� �

ðr̂Þ þ kQð _u� vÞ � û
n o

dXþ
Z
@Qci

v̂ � ðp� � pÞ þ ðE� � EÞðr̂Þ � kQðu� � uÞ � ûf gdR

þ
Z
@Qnc

v̂ � ðr� � rÞðnÞ þ ðv� � vÞ � r̂ðnÞf gdR ¼ 0 8ðû; v̂; bEÞ 2 U � V � E ð13Þ
in which r̂ ¼ CðbEÞ and where dX and dR are the spacetime volume and surface differentials.
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Problem 1 can be divided into two subproblems that can be solved sequentially. The first subproblem, defined on V � E, is
independent of the displacement solution. The second subproblem, defined on U , can be solved in sequence using the veloc-
ity solution from the first subproblem. This sequential solution procedure is often advantageous in practice.

Integration by parts yields the weak form of the 3-field problem:

Problem 2 (Three-field weak form). Find ðu;v;EÞ 2 U � V � E such that for each Q 2 P
Z
Q
�rv̂ðrÞ þ _̂v � pþ v̂ � qb� v � ðr � r̂Þ þ Eð _̂rÞ � kQðu � _̂uþ v � ûÞ
n o

dXþ
Z
@Qnc

v̂ � r�ðnÞ þ v� � r̂ðnÞ½ �dR

þ
Z
@Qci

v̂ � p� þ E�ðr̂Þ � kQu� � ûð ÞdRþ
Z
@Qco

�v̂ � p� Eðr̂Þ þ kQu � ûð ÞdR ¼ 0 8ðû; v̂; bEÞ 2 U � V � E: ð14Þ
Strong enforcement of (4) and the implied relation E ¼ symru on the interiors of all elements Q 2 P reduces the 3-field for-
mulation to a 1-field model with v; p; r and E dependent on the independent field u. The jump parts of the kinematic com-
patibility relations, (5), are not enforced a priori and are retained in the weighted residual statement below. The
interdependence of the weighting functions û; v̂ and r̂ in the 1-field formulation can prevent the terms in the integrand
on @Qci from vanishing independently, an outcome that would invalidate the proof of element-wise momentum balance
in [24]. We circumvent this problem by modifying the weighting on the residual of the displacement jump condition. We
replace û with û0, the projection of û into the zero-energy subspace of U , i.e., the subspace where _̂u0 ¼ 0 and
symrû0 ¼ 0 on all elements Q 2 P (cf. [24]).

Problem 3 (One-field weighted residual form). Find u 2 U such that for each Q 2 P
Z
Q

v̂ � r � r� _pþ qbð ÞdXþ
Z
@Qnc

v̂ � ðr� � rÞðnÞ þ ðv� � vÞ � r̂ðnÞf gdR

þ
Z
@Qci

v̂ � ðp� � pÞ þ ðE� � EÞðr̂Þ � kQðu� � uÞ � û0f gdR ¼ 0 8û 2 U ð15Þ
in which v̂ ¼ _̂u and r̂ ¼ CðrûÞ.

An integration by parts delivers the discrete, 1-field weak problem:

Problem 4 (One-field weak form). Find u 2 U such that for each Q 2 P
Z
Q
�rv̂ðrÞ þ _̂v � pþ v̂ � qb
� �

dXþ
Z
@Qnc

v̂ � r�ðnÞ þ ðv� � vÞ � r̂ðnÞf gdR

þ
Z
@Qci

v̂ � p� þ ðE� � EÞðr̂Þ � kQðu� � uÞ � û0f gdR�
Z
@Qco

v̂ � p dR ¼ 0 8û 2 U ð16Þ
in which v̂ ¼ _̂u and r̂ ¼ CðrûÞ.

The three-field and one-field formulations both balance linear and angular momentum over each spacetime element
Q 2 P and are provably dissipative with respect to energy balance [24,25]. The latter property implies unconditional stabil-
ity, and the relatively small energy error is effectively controlled by the h-adaptive implementation described in [26,28], as
demonstrated in Section 3.3.
2.1.4. Specialization to 1d� time
Here we give the component forms of the 3-field and 1-field weak formulations for the case of an elastic rod, d ¼ 1. These

are the specific models used in the numerical examples in Section 3. The volume and surface differentials, dX and dR, are
here replaced by specific expressions in dx and dt. Dimensional consistency requires a cross-sectional area A in one-dimen-
sional models. We assume that A is uniform, and it is factored out in the statements below. The cross-section faces generate
the non-causal boundary, @Qnc ¼ A� In, where the spatial component of the outward normal vector is nx :¼ n � ex in which
ex is the unit vector in the x-direction.

Problem 5 (Three-field weak form; d = 1). Find ðu;v ; EÞ 2 U � V � E such that for each Q 2 P
Z
Q
�v̂ ;xrþ _̂vpþ v̂qb� vr̂;x þ E _̂r� kQðu _̂uþ vûÞ
n o

dxdt þ
Z
@Qnc
ðv̂r� þ v�r̂Þnx dt þ

Z
@Qci

v̂p� þ E�r̂� kQu�ûð Þdx

þ
Z
@Qco

�v̂p� Er̂þ kQuûð Þdx ¼ 0 8ðû; v̂ ; bEÞ 2 U � V � E: ð17Þ



B. Kraczek et al. / Journal of Computational Physics 229 (2010) 2061–2092 2069
Problem 6 (One-field weak form; d = 1). Find u 2 U such that for each Q 2 P
Z
Q
�v̂ ;xrþ _̂vpþ v̂qb
� �

dxdt þ
Z
@Qnc

v̂r� þ ðv� � vÞr̂f gnx dt þ
Z
@Qci

v̂p� þ ðE� � EÞr̂� kQðu� � uÞû0f gdx

�
Z
@Qco

v̂pdx ¼ 0 8û 2 U ð18Þ
in which v̂ ¼ _̂u and r̂ ¼ Cû;x.

The target values are defined in (9), in which the Riemann values on the common boundary Cab between adjacent ele-
ments Qa and Qb are (cf. [24]):
vR ¼ 1
2

va þ vb
� �

þ c
C

rb � ra� �
na

x

n o
; ð19aÞ

rR ¼ 1
2

ra þ rb
� �

þ C
c

vb � va� �
na

x

� �
ð19bÞ
in which C is Young’s modulus, c is the elastic wave speed,
c ¼
ffiffiffiffiffiffiffiffiffi
C=q

p
ð20Þ
and we have assumed uniform material properties in D. Superscripts a and b denote traces from the interiors of elementsQa

and Qb or the normal vector component on @Qnc
a .

2.2. Time finite element method for molecular dynamics

Here we present a time integration scheme for molecular dynamics that derives directly from the above SDG formulation
for elastodynamics. We call this the Atomistic Discontinuous Galerkin (ADG) method, as it is a time-discontinuous Galerkin
finite element method for the spatially discrete atomistic initial value problem. This provides a unified mathematical frame-
work for our continuum and atomistic models and facilitates our subsequent development of the new AtC coupling strategy.
Such time discontinuous methods are not new, and are known to have good stability properties at the expense of dissipating
energy, as discussed in [34 and 35]. However, a simple modification of the ADG method eliminates numerical dissipation to
within the accuracy of the force integration. Although it is implicit, we demonstrate that the ADG method, when combined
with a suitable iterative solution scheme, outperforms the velocity Verlet method, a popular explicit integrator.

2.2.1. Atomistic Discontinuous Galerkin method
We identify the spacetime reference domain for the ADG formulation with the set of atoms, G ¼ fcg, where we simulta-

neously use c to index the set of atoms and to denote the cth individual atom. The trajectory of atom c is described by the
displacement–velocity pair ðuc;vcÞ, where uc ¼ xc � �xc is the displacement of c from its reference position �xc (here the equi-
librium position) to its current position xc, and vc is the velocity of c. We discretize the atomic trajectories with spatially-
uniform time intervals, In ¼�tn�1; tn½, where the discrete times tn define the partition of the overall time interval I . Let eU andeV denote the discrete ADG solution spaces for the atomic displacements and velocities, fðuc;vcÞg 2 eU � eV , such that the
components are piecewise-continuous polynomials of specified orders that might suffer jumps at the discrete times ftng.
The displacement and velocity histories on each open interval In are single-valued and require no special notation. However,
the solution can jump at the discrete times ftng, so we use fðum

c ;vm
c Þgjt¼tn

to denote the trace of the solution from interval Im

at time tn.
The spatially discrete ADG formulation can be derived from the continuum SDG model by representing the mechanics

fields as sums of Dirac delta functions centered on the atomic positions, as considered by Irving and Kirkwood [36], and
by dropping the strain and stress fields which have no direct atomistic counterparts. The continuum effects of the strain
and stress fields are replaced by their atomistic antecedents, the relative displacements of atoms and the non-local force
interactions between atoms (i.e., spatially discrete body forces). With this perspective in mind, we introduce the following
constitutive model in lieu of (6).

We assume that the potential energy of the atomistic system V tot depends only on atomic positions, so that in the absence
of external forces it can be written in terms of the individual atomic displacements:
V totðfxcgÞ ¼ V þ VðfucgÞ ð21Þ
in which V ¼ Vðf�xcgÞ is the total potential energy of the system in the reference configuration, chosen to be in static equi-
librium. Thus, the internal force acting on atom c is given by
Fint
c ðfuc0 gÞ ¼ �ruc Vðfuc0 gÞ; ð22Þ
while the momentum of atom c is given by
pc ¼ mcvc ðno sumÞ ð23Þ
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in which mc is the mass of c. Let Fc, the net force acting on atom c 2 G, be decomposed according to
Fc ¼ Fint
c þ Fext

c ð24Þ
in which Fext
c is the resultant of any external forces acting on c. Then the governing equations of kinematic compatibility and

the equation of motion for each atom c 2 G reduce to

_uc � vc ¼ 0; ð25aÞ
Fc � _pc ¼ 0; ð25bÞ
with jump parts at the start of each interval In given by
un
c � un�1

c

� �			
t¼tn�1

¼ 0; ð26aÞ

pn�1
c � pn

c

� �			
t¼tn�1

¼ 0: ð26bÞ
Following a procedure similar to the one for the continuum case, we introduce the dimensional factor, kc ¼ @2V=ð@xcÞ2jxc¼�xc
,

and form a weighted residual statement for the ADG problem that weakly enforces (25) and (26).

Problem 7 (ADG method: weighted residual form). Find the atomic trajectories fðuc;vcÞg 2 eU � eV such that for each time
interval In
X

c

Z
In

v̂c � ðFc� _pcÞþkcð _uc�vcÞ � ûc

 �

dtþ
X

c
v̂n

c � pn�1
c �pn

c

� �
þkc un

c �un�1
c

� �
� ûn

c

h i			
t¼tn�1

¼ 0 8f ûc; v̂c
� �

g 2 eU � eV :
ð27Þ
We integrate (27) by parts to obtain the weak problem statement.

Problem 8 (ADG method: weak form). Find the atomic trajectories, fðuc;vcÞg 2 eU � eV , such that for each time interval In,
X
c

Z
In

v̂c � Fc þ _̂vc � pc � kcðvc � ûc þ uc � _̂ucÞ
h i

dt þ
X

c
v̂n

c � pn�1
c � kcun�1

c � ûn
c

� �			
t¼tn�1

þ
X

c
�v̂n

c � pn
c þ kcun

c � ûn
c

� �			
t¼tn

¼ 0 8f ûc; v̂c
� �

g 2 eU � eV : ð28Þ
Let c be a time-independent vector field on In. Since (28) holds over In for all fðûc; v̂cÞg 2 eU � eV , it must be true for all
weightings of the form, ûc ¼ 0; v̂c ¼ c and ûj; v̂j ¼ 0 8j–c, for each atom c in turn in each time step. Consideration of
all such weightings implies balance of linear momentum for individual atoms and for the overall system to within the accu-
racy of the integral evaluations in each time step. Balance of angular momentum is not guaranteed for general, finite atomic
motions in this formulation. However, one could argue that angular momentum balances for infinitesimal atomic excursions
away from the equilibrium configuration, similar to the linearized theory of elastodynamics used in the continuum SDG for-
mulation. Nonetheless, the formulation is consistent, so that any imbalance in angular momentum can be controlled with
adaptive mesh refinement. For the overall system, linear momentum is conserved to within the accuracy of the linearized
theory if F ext ¼ 0 and the potential V generates self-equilibrating internal forces so that

P
cFn

c ¼ 0.

Energy analysis shows that the basic ADG method is guaranteed to be diffusive at the level of individual atoms and, there-
fore, stable. Setting v̂c ¼ vc; ûc ¼ 0 and v̂j; ûj ¼ 0 for j–c in (28), we obtain after some manipulation,
1
2

vn
c � pn

c

� �			
t¼tn

¼ 1
2

vn�1
c � pn�1

c

� �			
t¼tn�1

þ
Z
In

vc � Fc dt � 1
2

svct � spct
�� 			

t¼tn�1

ð29Þ
in which for any quantity f ; sf tjtn
:¼ f n�1jtn

� f njtn
. Since svt � spt ¼ svt �msvt P 0, the ADG method is stable, and the last

term in (29) is the numerical dissipation over time step In associated with atom c.
A simple modification of the ADG method allows the dissipation jump term in (29) to vanish, so that energy balances to

within the accuracy of the force integral evaluation. Specifically, we obtain per-atom energy and momentum conservation in
the ADG method by replacing the weighting functions ûc and v̂c in the integral of (27) with their L2 projections into subspac-
es containing polynomial functions of order p� 1, where p is the polynomial order of the parent spaces, eU and eV . No pro-
jection is applied to the weighting functions that enforce the jump conditions at time tn�1. This modification relaxes the
weak enforcement of the governing equations in (27) to the minimum level required to support the proofs of momentum
and energy balance and forces the inflow jump conditions to vanish independently. Numerical dissipation is eliminated
and energy and momentum balance are exact to within the accuracy of the force integral evaluations (if an approximate
quadrature is used) or the machine precision, whichever is larger. In practice, it is most efficient to choose a numerical quad-
rature scheme that matches the accuracy of the force integration to the order of accuracy of the underlying ADG
discretization.

This modified ADG (mADG) method is closely related to the energy and momentum-conserving methods discussed by
Borri and Bottasso [35] and later by Gross et al. [37] and references therein, for conforming (time-continuous) Galerkin
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projections. As shown by Bottasso [38] (see also work by Hulme [39]), some classes of time finite element methods are
equivalent to symplectic implicit Runge–Kutta methods, which have been of great interest in the numerical integrator com-
munity (see e.g. [32,40]). Similar to what Borri and Bottasso found, but in contrast to the work by Gross et al., the discon-
tinuous basis and weak enforcement of temporal continuity of displacement and velocity (momentum) in the ADG
formulation are critical to its successful coupling with the SDG continuum model. Coupling the conforming models in
[37] to the efficient adaptive SDG solution scheme would destroy the energy and momentum balance properties.

2.2.2. Iterative solution procedure for the ADG method
The ADG model offers a number of attractive features: arbitrarily high-order accuracy with increasing polynomial order,

unconditional stability that supports arbitrarily large time steps, per-atom balance of momentum and energy to within the
accuracy of the force integration, and, in the present context, compatibility for coupling to the adaptive SDG continuum mod-
el. The ADG method is an implicit integrator, and due to the non-local force interactions between atoms, this implies that all
atoms must be solved simultaneously within each time step. The cost of solving simultaneous nonlinear equations for very
large systems of atoms is generally thought to outweigh the advantages of implicit models, and this explains the dominance
of explicit integrators in MD software.

We next introduce a simple iterative solution scheme for ADG models that scales linearly with problem size. Although
atomic force interactions are non-local, their range is limited in a computational setting by either an explicit cut-off radius
or by the distance beyond which their magnitudes fall below the machine precision (several lattice spacings in a typical solid
crystal). We exploit this property in the design of a simple iterative solution scheme in which the number of iterations re-
quired per time step is relatively small and independent of problem size. We show that this property, in combination with
other favorable properties inherent to the ADG model, yields an iterative implicit integrator that is competitive with the
Velocity Verlet (VV) method, a popular explicit integrator used in MD simulations. AtC coupling in solids requires accurate
modeling of mechanical pulses in both the continuum and atomistic domains. In this particular context, the iterative ADG
model clearly outperforms the VV method.

The iterative solution scheme begins with a non-disjoint partition of the atomistic spatial domain into a set of M over-
lapping regions called bins, fbagM

a¼1. Each bin ba contains Na 6 N atoms, where N is the maximum bin size, and every atom
is in at least one bin. Due to the overlaps between bins, some atoms are in more than one bin. Atoms that fall on a bin bound-
ary are included in that bin. The width of overlap between bins must be at least equal to the effective cut-off radius for atom-
ic force interactions, and N is chosen small enough to ensure that a direct solve of the ADG equations for the atoms within
any single bin is not too expensive. In the case of solid crystals without diffusion, the assignment of individual atoms to bins
can be performed once at the start of a simulation and held fixed from there on.

At the start of each new time step, we extrapolate data from the previous step to generate an initial estimate of the solu-
tion for each atom in the current time step. Then we loop over the bins in what amounts to an overlapping block-Gauss–Sei-
del or multiplicative Schwarz iterative solution scheme [41]. For each current bin ba, we perform one Newton–Raphson
iteration for the ADG equations to update the solutions for the Na atoms in ba, while fixing the solutions for all the other
atoms in the system. In view of the bin-size limit N, a direct method is efficient for solving the bin-wise Newton updates.
We check convergence of the global ADG residual vector after each complete loop over the bins. We continue looping over
the bins until the norm of the residual vector vanishes to within machine precision.

The overlap between bins ensures that all atomic force interactions are included in at least one bin-level Newton update
during each loop over the bins. This hastens the propagation of information and dramatically reduces the number of itera-
tions required for convergence relative to schemes with non-overlapping bins. In contrast to large systems arising from ellip-
tic and parabolic models, where the number of Gauss–Seidel iterations required for convergence grows with problem size,
the hyperbolic structure of our problem, the finite cut-off radius for atomic force interactions and the finite wave speeds of
mechanical pulses in MD models limit the distance information must propagate in each time step before convergence is
achieved. Let nL be the number of loops over the bins required to attain convergence of the ADG model to within machine
precision. In practice, nL is relatively small and independent of problem size.

Although the implicit mADG formulation is unconditionally stable, the iterative solution scheme has a finite radius of
convergence that imposes a maximum time-step size. The use of overlapping bins significantly increases the method’s radius
of convergence relative to methods with non-overlapping bins. As demonstrated in numerical studies below, the iterative
solver’s radius of convergence is sufficiently large that the iterative mADG scheme competes effectively against the explicit
VV method.

We present numerical results for an example in one spatial dimension (extensions to higher dimensions are straightfor-
ward) to demonstrate the efficiency of the proposed iterative solution strategy. We consider a one-dimensional, periodic
chain containing 256 atoms with atomic spacing a. The time interval is (0,256). The atoms interact through a modified Len-
nard-Jones potential, UmLJ, given by [40]
UmLJðrÞ ¼ ULJðrÞ � ULJðrcÞ � ðr � rcÞ
dULJ

dr

					
r¼rc

; ð30aÞ

ULJðrÞ ¼ 4�
R
r

� 
12

� 2
R
r

� 
6
" #

ð30bÞ
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in which ULJ is the standard Lennard-Jones potential, r is the distance between any two atoms, rc is the cut-off radius beyond
which atomic interactions vanish, R sets the potential length scale, � sets the potential depth and we enforce C1 continuity at
r ¼ rc.4 We choose a cut-off radius, rc ¼ 2:5a, that includes up to second-nearest-neighbor force interactions between atoms.
The initial conditions for displacement and velocity correspond to a traveling pulse:
4 In g
radius.
uðx; tÞ ¼ B cos3ðkx�xt � /Þ x 6 1
k /	 p

2

� �		 		;
0 otherwise

(
ð31Þ
in which the parameter / determines the initial position of the pulse. Here we prescribe the amplitude, B ¼ a=40. We solve
with the iterative mADG integrator described in Section 2.2.1, so the energy balances to within the accuracy of the force inte-
gration for every atom in every time step.

We use the VV method as a reference explicit method to study the relative efficiency of the iterative mADG integrator. As
one might expect, the explicit VV method delivers weaker conditions for linear momentum balance than those obtained with
the implicit mADG method. It is easy to show that the VV method balances momentum globally over a system of atoms for
vanishing external forces [31]. However, in contrast to the ADG and mADG methods, it generally does not balance momen-
tum for individual atoms, due to its use of averaged interatomic forces within each time step. The VV model also does not
offer the possibility of high-order accuracy, a feature that is available in (m)ADG models with variable polynomial order. Sta-
bility considerations limit the maximum step size. However, the VV integrator requires only one force evaluation per time
step, while the number of force evaluations in the iterative mADG method increases with polynomial order and depends on
the number of iterations per time step required to solve the implicit equations. Thus, for (m)ADG to compete against VV, we
must exploit the (m)ADG method’s unconditional stability by using larger step sizes and depend on the method’s high-order
accuracy to overcome the extra cost of multiple force evaluations per time step.

Since the evaluation of interatomic forces dominates the cost of MD simulations, we use the total number of force eval-
uations required to complete a simulation, denoted by Nf , as the measure of cost in our efficiency studies. An efficient inte-
grator reduces the ratio between some error measure and the cost Nf . A suitable choice of the error measure depends on the
nature and purpose of the simulation problem at hand. The error in global energy balance is a commonly used measure, but
taken alone, it is not sufficient in AtC coupling problems where the propagation of mechanical pulses is a central focus. Direct
measures of trajectory error and of the residuals of the governing equations can be more meaningful in these problems.
Therefore, we consider multiple error measures in this efficiency study.

First, we consider efficiency relative to the global energy error. Since there are no external energy sources, the total sys-
tem energy should be constant in time and equal to the energy determined by the initial data, E0. We sample the energy of
the computed solution at N discrete times ti, and define the overall energy error as
�e :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NðN � 1Þ
XN

i¼1

ðEi � E0Þ2
vuut ; ð32Þ
where Ei is the total energy at the sample time ti. Fig. 2 depicts the energy error versus the number of force evaluations for VV
and iterative ADG simulations with polynomial orders ranging from 1 to 5. We use the mADG model, so the dominant source
for energy error in the ADG results is quadrature error associated with the nonlinear interatomic forces. As the time steps
become shorter, the ADG errors attain their asymptotic convergence rates. For p P 2, the ADG errors drop below the VV error
at costs where the VV error ranges from 10�7 to 10�8 and Nf 
 2050. This corresponds to a time-step size equal to one eighth
of the VV stability limit. Beyond this point, the energy errors for the higher-order ADG methods drop rapidly to machine-
precision levels, while the VV error decreases at a much slower rate. Although a normalized energy error smaller than
10�7 might appear to be of no practical interest, we shall see that this level of accuracy for energy balance does not ensure
accurate renderings of propagating mechanical pulses.

We define normalized displacement and velocity error measures as
�u ¼
ku� ukL2

kukL2
; �v ¼

kv � vkL2

kvkL2
; ð33Þ
where u and v are reference solutions and the L2 norm is given by
kð�ÞkL2 :¼
XN

n¼1

X
c

Z
In

j � j2 dt
� �" #" #1

2

¼
X

c

Z tN

t0

j � j2 dt

" #1
2

: ð34Þ
Since no exact solution is available, we use the p ¼ 5 mADG method with Dt ¼ 0:0078125 (or 32,768 time steps) to generate
u and v. Figs. 3 and 4 show the normalized displacement and velocity errors as functions of the number of force evaluations.
In both cases, the mADG errors for p > 2 drop below the VV error at costs where the VV error still exceeds 1%, an error level
eneral a Ci truncation can be constructed by subtracting from the potential the first iþ 1 terms of its Taylor series, expanded about the desired cut-off
Afterward the potential depth can be re-scaled, as necessary.



Fig. 2. Energy error �e versus cost Nf . Results are for Velocity Verlet (VV) algorithm and for iterative mADG (variable p) solution method with polynomial
order p. The time-step size at the left-most VV data point corresponds to one half the VV stability limit.

Fig. 3. Normalized displacement error �u versus cost Nf for mADG (variable p) and VV methods.

Fig. 4. Normalized velocity error �v versus cost Nf for mADG (variable p) and VV methods.
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that is too large to reliably model effects of physical interest, such as dispersion of mechanical pulses. For larger values of p,
only a modest increment of cost is needed to reduce the error to machine-precision levels.

We introduce a normalized residual error measure to monitor how well the solution satisfies the equations of motion and
compatibility:
Fig. 5.
efficien
�r :¼ k _p� FkL2

kFkL2

� 
2

þ k _u� vkL2

kvkL2

� 
2
" #1

2

: ð35Þ
Fig. 5 shows the normalized residual error as a function of cost. Again, we see that the iterative mADG method with p P 2
equals or outperforms the VV algorithm in the range where the residual error is below 1%.

Overall, we conclude that the high-order mADG method, when implemented with an overlapping block-Gauss–Seidel
iterative solver, outperforms the VV algorithm for accuracy ranges of practical interest for AtC coupling problems in solids.
Furthermore, higher-order implementations of the ADG method outperform lower-order versions. The low-order ðp ¼ 1Þ
ADG method shows the same convergence rates as the VV algorithm, but in terms of efficiency, it underperforms VV due
to the increased cost of solving the implicit equations. However, ADG methods of all polynomial orders share a common
mathematical structure with the continuum SDG model that is critical to the success of our coupling strategy.
2.3. Dynamic response of coupled heterogeneous systems

We consider the dynamic behavior of heterogeneous coupled systems at zero temperature, comprised of some combina-
tion of continuum and atomistic zones. We focus on systems in which the impedances of the component models are
matched, so that the ideal response is zero reflectance at coupling interfaces, and examine the requirements for passing
waves across the interfaces without spurious reflections. We demonstrate through simple models that, in addition to match-
ing the impedances of the component models, the details of the coupling method itself must also be carefully selected to
avoid reflections. These studies motivate the sharp–interface AtC coupling model proposed in Section 2.4, in which spurious
reflections are effectively suppressed, without damping, by adjusting the position of the coupling interface relative to the
atomic positions.
2.3.1. Matching properties of the continuum and atomistic domains
Consider two linearly elastic rods with the same uniform, cross-section area that are coupled end-to-end, as in Fig. 6(a).

The condition for non-reflection of mechanical waves at the coupling interface is that the impedances of the materials in the
two rods be the same, where the impedance Zi of material i is the product of its mass density qi and wave speed ci [42].
Together with (20), this implies
ffiffiffiffiffiffiffiffiffiffiffi

q2C2

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
q1C1

p
: ð36Þ
We seek to match the physical properties of the component domains in the atomistic–continuum system in Fig. 6(b), so we
employ the stronger condition that the wave speeds and mass densities are as close to one another as possible. This implies
that the impedances will be likewise matched. We use a coarse-grained mass density on the atomistic side to match the
Normalized residual error �r versus cost Nf . The higher convergence rates of the implicit mADG method for p > 1 are evident, as is the improved
cy of higher-order mADG methods relative to the explicit VV method.



Fig. 6. Representative coupled, heterogeneous systems for d ¼ 1. (a) continuum–continuum system comprised of two elastic rods joined end-to-end, and
(b) atomistic–continuum system with unspecified coupling.
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mass densities, as explained below. Matching the wave speeds is more difficult, since the atomistic wave speed is dispersive,
while the continuum wave speed is not.

The wave speeds in an atomistic system are obtained through its dispersion relation [43]. Consider a monatomic mass–
spring system with atomic mass m and uniform interatomic spacing a, interacting through linear springs out to the Sth-near-
est neighbor. The dispersion relation for this system is
x2 ¼ 1
m

XS

s¼1

Ks sin2 ksa
2

� 

; ð37Þ
where Ks is the spring constant of the sth-nearest-neighbor spring and for a pure sine wave of frequency m and wavelength k
in either an infinite or a periodic chain of atoms, x ¼ 2pm and k ¼ 2p=k. The phase velocity is the velocity of each Fourier
mode and is given by ck ¼ x=k. In the long-wavelength limit, i.e., a� k, the wave speed is
clw ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

XS

s¼1

s2Ks

vuut : ð38Þ
In many cases, the difference between the dispersive atomistic solution and the non-dispersive continuum solution is small,
and, as will be seen in the numerical examples, it is often sufficient to match the continuum wave speed to clw. To match the
impedances of one-dimensional atomistic and continuum systems, as depicted in Fig. 6(b), we assign an effective cross-sec-
tion area Aat ¼ A to the atomistic model, in which A is the cross-section area of the continuum domain (taken to be uniform
here for simplicity). The coarse-grained atomistic mass density, qat ¼ m=ðaAÞ, combines with (38) to give the atomistic
impedance Zat as
Zat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
A

XS

s¼1

s2Ks

vuut : ð39Þ
After matching the impedances and mass densities of the atomistic and continuum systems, (39) completes the relationships
between the physical parameters of the one-dimensional continuum domain and the mass–spring system:
c ¼ clw; ð40aÞ

q ¼ m
aA

; ð40bÞ

C ¼ a
A

XS

s¼1

s2Ks; ð40cÞ
where any two of these relations imply the third. These relations can be extended to address linear multi-atom interactions
when the continuum interacts with the atomistic region only in the low-frequency, long-wavelength limit, which is the lin-
ear portion of the acoustic branch of the dispersion relation [43].

Although system (40) does not hold, in general, for nonlinear material models, it is applicable to AtC systems character-
ized by nonlinear interatomic potentials if the loading amplitude is small enough to ensure that the motions of atoms suf-
ficiently removed from defects are limited to small oscillations about their reference positions [44]. Thus, we can reasonably
couple a linearly elastic continuum model and an atomistic model having a nonlinear potential, provided that any defects or
large-amplitude motions away from the reference configuration are kept within the atomistic domain and safely away from
the coupling interface. The continuum and coupling parameters can then be based on a linearized potential [45,18]. For non-
linear interactions where it is either impossible or undesirable to use a linearly elastic continuum model, another criterion
must be adopted to determine the bulk properties of the nonlinear continuum model, such as the widely-used Cauchy–Born
hypothesis [46,47].

To illustrate the extraction of spring constants from the linearization of a nonlinear potential, consider a chain of atoms
interacting through the Lennard-Jones potential (30) with reference positions f�xcg, consistent with an undeformed, equilib-
rium lattice constant a ¼ �xcþ1 � �xc. Linearizing the system about the reference configuration, we obtain the equivalent spring
constants between atoms c and cþ s,
Ks
c ¼ @

2ULJ=@r2
			
r¼j�xcþs��xc j

: ð41Þ
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We note that Ks
c is not affected by substituting U mLJ for ULJ. We use the stationary potential energy condition to compute f�xcg

and a, and apply (41) to obtain the spring constants, the first three of which are ðK1
c ;K

2
c ;K

3
cÞ ¼ ð1:0;�0:00427;�0:00017Þ for

first, second and third-nearest neighbors of c, where � is specified such that K1
c ¼ 1:0 in suitable units of [energy]/[length]2.

The longer-ranged springs have successively smaller, negative spring constants and will often fall outside the cut-off radius
imposed on the potential, so relatively few neighbors need to be included when determining C. Since the lattice parameter a
determines the relative positions of all pairs of atoms in the reference configuration of the chain, all of the spring stiffnesses
are fully determined by this single parameter and the potential ULJ.

2.3.2. Coupling heterogeneous systems with zero reflectance
Care must be taken when devising coupling strategies, as any inhomogeneity in the overall system due to the coupling

scheme itself will induce spurious reflections. In particular, we demonstrate that the atomic positions in any atomistic com-
ponent of a coupled heterogeneous system must be carefully registered with respect to the geometry of neighboring com-
ponents to avoid spurious reflections. Apparently, this atomic-scale registration is either ambiguous or left to chance in
previous AtC coupling strategies. The following studies motivate, in part, the SDG–ADG coupling strategy described in Sec-
tion 2.4 in which spurious reflections are suppressed, without damping and without invoking special boundary conditions,
solely by adjusting the positions of continuum boundaries relative to the positions of atoms in adjacent atomistic domains.

To illustrate the importance of proper registration between adjacent domains, we consider coupling between a pair of
distinct monatomic, uniform mass–spring systems, each interacting through first-nearest-neighbor springs. The physical
parameters for system i are the number of atoms jGij, the lattice constant ai, the effective area Ai, the atomic mass mi and
the spring constant Ki. Rather than specify Ki directly, it suits our purposes to instead specify Fi, the spring force at 100%
coarse-grained strain, so that Ki ¼ Fi=ai. For R :¼ a1=a2 and A1 ¼ A2 ¼ A, the two systems will have the same coarse-grained
mass densities, qi ¼ mi=ðaiAiÞ, and the same long-wavelength wave speeds, clw

i , if
m2 ¼
1
R

m1; ð42aÞ

F2 ¼ F1 () K2 ¼ RK1: ð42bÞ
Eq. (42b) ensures that all springs carry the same force when the entire coupled system is subjected to a uniform strain state.
Without this constraint, it would be impossible to satisfy equilibrium at the coupling interface under static, constant-strain
conditions – a necessary, but not sufficient, condition for reflection-free coupling.

The paired mass–spring systems do not imply a unique means to specify the coupling. Possible coupling methods include
a coupling mass mc, as represented in Fig. 7(a), and a coupling spring, characterized by lattice parameter ac and subject to
Fc ¼ F1 ¼ F2; ð43Þ
so that the coupling spring constant is Kc ¼ F=ac, cf. Fig. 7(b). As shown in Fig. 8, arbitrary choices for ac or mc produce reflec-
tions at the coupling boundary that are qualitatively similar to reflections of a pulse off a knot in a string; they all vanish in
the long-wavelength limit [48].

If the interface is a feature of the coupling model, but not of the material we are representing, then the reflection is said to
be unphysical or spurious, and we seek some means to suppress it without otherwise disturbing the solution. For example,
suppose we start a traveling pulse in an otherwise quiescent domain 1, and let ~t be a time when the pulse has passed com-
pletely out of domain 1 into domain 2. Since domain 1 should return to a quiescent state at time ~t, minimizing the l2-norm of
the atomic displacements in region 1 with respect to either mc or ac (with Fc ¼ F1 ¼ F2 held fixed) is equivalent to minimiz-
ing the spurious reflection. Thus, the optimal coupling lattice parameter and coupling mass are given by
a�c ¼ arg min
ac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c2G1

u2
c

			
~t

s
¼ a1 þ a2

2
; ð44aÞ

m�c ¼ arg min
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c2G1

u2
c

			
~t

s
¼ m1 þm2

2
: ð44bÞ
Fig. 7. Coupled monatomic mass–spring systems using (a) coupling mass mc and (b) coupling spring with constant Kc :¼ Fc=ac.



We investigate the conditions for zero reflectance in a coupled, atomistic–continuum system by taking the continuum limit
of one of the atomistic mass–spring subsystems in the heterogeneous atomistic model. Specifically, for system 2, we hold the
domain length, the coarse-grained mass density q2 and the long-wavelength wave speed clw

2 fixed, but take the infinitesimal
limit of the equilibrium lattice parameter, a2 ! 0. The conditions for reflectance-free coupling in the spring-coupling model
(cf. Fig. 7(b)) remain valid under the limiting process, so (44a) gives the limiting value of the optimal coupling lattice param-
eter as lima2!0a�c ¼ a1=2. Thus, we obtain minimum-reflectance coupling between a continuum model with material param-
eters determined by (40), in which S ¼ 1 and the atomistic parameters come from system 1 with K1

1 ¼ F1=a1, if the coupling
lattice parameter is taken as ac ¼ a1=2, or equivalently, the coupling spring constant is taken as Kc ¼ 2F1=a1. On the other
hand, we expect significant spurious reflections for short-wavelength pulses for any other choice of ac , even if the bulk prop-
erties of the continuum and atomistic domains are perfectly matched.

As discussed in Section 1.1, several coupling methods minimize the reflected energy by damping reflected modes, paying
special attention to modes that the discrete continuum model cannot resolve. However, we have shown that spurious reflec-
tions can arise, even when both domains are fully capable of resolving the given wave form. Therefore, coupling methods
that rely on damping to suppress spurious reflections are expected to cause undesirable attenuation of the transmitted signal
in these cases. The above analysis suggests that spurious reflections can be suppressed, without sustaining undesirable en-
ergy losses due to damping, by adjusting the relative positions of atoms and the AtC coupling interface. We next propose a
new AtC coupling scheme that uses this concept to suppress spurious reflections while balancing momentum to within ma-
chine precision and energy to within the accuracy of the component continuum and atomistic models.

2.4. Coupled SDG–ADG model

This subsection presents the details of a new AtC coupling strategy that links the continuum SDG and atomistic ADG mod-
els. The coupling strategy can also be used to join SDG models with explicit atomistic models, albeit with some compromise
in the balance properties. We assume that the material properties of the continuum match the effective properties of the
atomistic model in the long-wavelength limit. We further assume that all coupling interfaces are material interfaces. That
is, there is no flux of mass or atoms across the coupling interfaces, which are therefore taken to be vertical spacetime man-
ifolds. This assumption precludes modeling certain processes, such as diffusion of solute species through a crystal and solid-
ification. Generalizations to loosen this restriction appear to be possible, but are beyond the scope of the present study. The
coupling strategy is intended for use in up to three spatial dimensions, and for the most part we describe it in a dimension-
independent fashion. However, our current implementation and the numerical results reported in Section 3 only treat prob-
lems in 1d � time. We discuss prospects for implementations in 2d- and 3d � time in Section 4.

In general, the dynamic response of atomistic models can be decomposed into modes that are either resolvable or unre-
solvable by the continuum model. Ideally, the resolvable modes should include all modes with wavelengths greater than
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some lower bound, on the order of the atomic spacing a, where the assumptions of continuum theory cease to be valid. In
practice, discretization error in numerical continuum models often renders some modes above this physical limit unresolv-
able. Using an adaptive implementation of the SDG model and an OðNÞ causality-based solution scheme in the continuum
zone, we are able to remove this limitation and resolve wavelengths all the way down to, and indeed below, the physical
limit of continuum theory. Thus, the decomposition into resolvable and unresolvable modes can be based on physical, rather
than numerical, criteria.

We focus on maintaining balance of momentum and energy within and between the component models and on suppress-
ing spurious reflections at the coupling interface without introducing non-physical damping. This avoids draining energy
from the unresolvable modes which should, in combination with thermal response in the continuum region, participate
in the overall energy balance of the coupled system. We use non-overlapping continuum and atomistic zones to enable pre-
cise treatment of the balance laws, and show that the coupled SDG–ADG model enforces momentum balance to within ma-
chine precision over individual atoms and elements as well as clusters of the same. The coupling model is dissipative, with
energy balance maintained to within the accuracy of the component methods. For now, we assume noise-free waveforms at
zero temperature under the assumption that all modes are resolvable in the continuum. Methods for distinguishing and
treating unresolvable modes are left for future research.

The main components of the coupling scheme are:

� A two-scale geometry model comprised of a macroscopic continuum region D, a non-overlapping atomistic zone populated
by a set of atoms identified by their reference positions, an atomic-scale coupling interface C that separates the continuum
region from the atomistic zone, and atomic-scale offsets that define the position of C relative to @D at the scale of the
atomic spacing.

� An independent atomistic stress field on C that models the momentum flux out of the atomistic zone.
� An atomistic trace operator that maps the discrete velocities of nearby atoms into a velocity field on C. The trace operator

also generates an adjoint mapping of the atomistic stress field into discrete, work-equivalent forces acting on individual
atoms.

� Weak enforcement of jump conditions on C that describe kinematic compatibility and momentum balance between the
traces of the continuum fields and the constructed atomistic stress and velocity fields. The jump conditions are written
with respect to target Riemann values, as in the SDG method, to preserve the common characteristic structure of the con-
tinuum equations and the long-wavelength limit of the atomistic equations.

Numerical results presented in Section 3 demonstrate that optimizing the atomic-scale geometry parameters in the
atomistic trace operator reduces spurious reflections at the coupling interface to negligible levels without resorting to
non-physical damping.
2.4.1. Geometry of the coupling model
Fig. 9 shows the spatial layout of the two-scale coupling model. The geometry of the continuum spatial domain Dx � Ed is

defined using macroscopic continuum coordinates x. As before, the continuum boundary @Dx is equipped with a unit out-
ward normal vector n, but it now has the disjoint partition, @Dx ¼ @Dv

x [ @Dr
x [ @Dc

x, in which @Dc
x is the coupling part of

the continuum boundary that interacts with the atomistic model.
The atomistic region, with interatomic length scale a, is populated by a set of atoms G ¼ fcg identified by their spatial

coordinates, xc. Although the atomistic region has no naturally-defined boundary, our coupling strategy nonetheless requires
a coupling interface, denoted by Cx, on which to construct effective atomistic stress and velocity fields that enter the cou-
pling jump conditions described below. The continuum coupling boundary @Dc

x provides a natural basis for defining the cou-
Fig. 9. Spatial geometry of atomistic–continuum coupling model for d ¼ 2. An atomic-scale shift of the continuum coupling boundary @Dc
x defines the

spatial atomistic coupling boundary Cx . A positive value of the shift d indicates a normal perturbation outward from the atomistic zone.
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pling boundary, but the macroscopic coordinates that define @Dc
x are not directly comparable to the atomic-scale coordi-

nates, xc. Therefore, we introduce an atomic-scale shift, d : @Dc
x ! R, where d is comparable in magnitude to the atomic length

scale a, and define Cx ¼ fx ¼ y � dnðyÞ : y 2 @Dc
xg so that coordinates x 2 Cx are directly comparable to the atomic positions

xc. The coupling boundary Cx serves as a proxy boundary for the atomistic region, so we equip it with a normal vector that
points outward from the atomistic zone: nCðy � dnðyÞÞ ¼ �nðyÞ 8y 2 @Dc

x. The values of the shift d are chosen to minimize
spurious reflections, as described in Section 2.4.3. Fig. 9 shows d as a uniform field, but in general it may vary with position
on @Dc

x.
We again have the spatial partition of Dx into space elements: Px ¼ fQmgM

m¼1, and the temporal partition of the analysis
interval I into time steps: PI ¼ fIngN

n¼1. We generate the spacetime domain and spacetime mesh as the Cartesian products,
D ¼ Dx � I ; P ¼ Px � PI ; C ¼ Cx � I , and Cn ¼ Cx � In. While the time steps determined by PI must be taken as uniform
across all of the atoms, an unstructured partition of D can be useful, as exemplified in Section 3.3. The shift of the coupling
boundary to C is only used in the trace operator for the atomistic velocity field (cf. Section 2.4.2), where C must be described
in consistent atomic-scale coordinates. Integrals that weakly enforce the coupling jump conditions, on the other hand, are
macroscopic in character, so for these we write
5 If th
field, i.e
Z
Cn

f ðx; t; nCÞdR ¼
Z
@Dc

n

f ðx; t;�nÞdR: ð45Þ
2.4.2. Atomistic stress field and velocity trace operator
This subsection describes the construction of the effective atomistic stress and velocity fields on the atomistic coupling

boundary that enter the coupling jump conditions described in Section 2.4.3. The atomistic stress, a second-order tensor field
on C denoted as rat, represents the flux of linear momentum into the atomistic region due to its interaction with the con-
tinuum region.5 It appears as an independent solution field in the SDG–ADG coupling model, with a piecewise-continuous poly-
nomial structure on C. A momentum- and energy-conserving mapping from rat to discrete forces acting on individual atoms is
defined below.

The atomistic velocity field on C is a dependent field written as
vatðx; tÞ ¼ trat x; vcðtÞ
� �

; d
� �

ð46Þ
in which trat is the atomistic trace operator for velocity, and fvcðtÞg denotes the velocities of the atoms in G at time t. The pri-
mary function of the trace operator is to construct a homogenized continuum velocity field on C as a function of the discrete
atomic velocities. This allows us to write jump conditions, similar to those in the SDG formulation, that couple the contin-
uum and atomistic response. A secondary purpose is to provide a spatial filter that removes high-frequency modes associ-
ated with continuum thermal response from the atomistic velocity field on C. Temporal filtering can also be introduced by
substituting time-averaged quantities for the unfiltered atomic velocities, fvcðtÞg. However, we do not pursue either form of
filtering here, since we are concerned with systems at zero temperature where our goal is to pass the entire signal across the
coupling interface.

The construction of the atomistic trace operator involves a smooth and continuous atomic-scale fit, ~vðx; tÞ, to the veloc-
ities of atoms near the coupling interface:
~vðx; tÞ ¼
X
c2GC

hcðxÞvcðtÞ; ð47Þ
where we require
P

c2GC
hcðxÞ ¼ 1 8x, and in which GC � G is a specified collection of atoms in the vicinity of the coupling

interface, typically those within the cut-off radius of the interatomic potential. Extrapolation and restriction to the coupling
interface C completes the definition of the trace operator:
trat x; vcðtÞ
� �

; d
� �

:¼ ~vðx; tÞjCðdÞ: ð48Þ
The position of C relative to the atoms varies with the shift parameter, so varying d affects the action of the atomistic trace
operator.

The coupling stress rat describes the momentum flux due to the action of the continuum region an the atomistic zone. We
need a mapping of rat into time-dependent forces acting on individual atoms, c 2 GC, to close the model. Let Fc, the net force
acting on atom c 2 G, be decomposed according to
Fc ¼ Fint
c þ Fr

c þ Fext
c ð49Þ
in which Fint
c is the force acting on c due to interatomic forces within the atomistic zone, as defined in (22), Fr

c is the coupling
force acting on c derived from rat and due to interactions with the continuum region, and F ext

c is the resultant of any non-
coupling external forces acting on c. Clearly, Fr

c ¼ 0 for atoms c R GC. We require the coupling forces to satisfy the work-
equivalence constraint,
e coupling boundary is a vertical (material) interface, as we assume in this study, then we only require the normal component of the atomistic stress
., a traction field on C. However, for generality, we continue to use ‘‘stress” and rat to refer to this field.
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X
c2GC

Z
In

v̂c � Fr

c dt ¼
Z

Cn

v̂at � ratðnCÞdR 8fv̂cg 2 eV ð50Þ
in which v̂atðx; t; dÞ ¼
P

c2GC
hcðxÞv̂cðtÞjCðdÞ. After some manipulation, we find that (50) implies the mapping,
Fr

cðtÞ ¼
R

Cx
hcðxÞratðnCÞjt dx for c 2 GC;

0 otherwise

(
ð51Þ
and that the coupling stresses rat and the coupling forces Fr

c deliver the same momentum input to the atomistic zone. Taking
fv̂cg ¼ fvcg in (50), we find that they also deliver the same energy input. The stresses rat can be interpreted as Lagrange mul-
tipliers that enforce a holonomic kinematic compatibility constraint on C [49].

Since the examples reported in Section 3 involve problems in 1d� time with smooth initial data (zero temperature), we
use one-dimensional Lagrange interpolation polynomials for hcðxÞ. Thus, we write the n-atom trace as
vatðtÞ ¼
X
c2GC

~hcvcðtÞ ð52Þ
in which ~hc :¼ hcðxÞjCx
are restrictions of Lagrange interpolation polynomials in x of degree n� 1, and where the set GC con-

tains the n atoms nearest to C (cf. Fig. 10 in which C is at x ¼ 0). Note that Lagrange interpolation polynomials satisfyP
c2GC

~hcðxÞ ¼ 1 8x.

2.4.3. Coupled SDG–ADG formulation
The SDG–ADG coupling strategy involves coupling Riemann values, rRc and vRc, that depend on the traces of the continuum

stress and velocity fields on @Dc and on rat and v at on C (cf. (45)). The coupling Riemann values for d ¼ 1 are
vRc ¼ 1
2

v þ vat
� �

þ c
C

rat � r
� �

nx

h i
; ð53aÞ

rRc ¼ 1
2

rþ rat� �
þ C

c
vat � v
� �

nx

� �
ð53bÞ
in which undecorated values v ; r and nx refer to continuum traces and the spatial normal component on @Dc. The param-
eters c and C are impedance matched according to (40). Our numerical experience, as reported in the examples in Section 3,
suggests that Riemann values based on the long-wavelength limit of the atomistic model provide an adequate basis for cou-
pling continuum and atomistic response to general, complex wave forms.

We complete the coupling model by modifying the definition of the target values (9) in the SDG formulation to include
the coupling Riemann values on @Dc, and by including the coupling forces Fr

c in an augmented ADG model that includes the
auxiliary field rat and jump conditions for vat and rat on C. Specifically, we replace (9b) with
v�; r� ¼

vþ;rþ on @Qci n @Dci;

�v;r on @Q \ @Dv ;

v; �r on @Q \ @Dr;

vRc;rRc on @Q \ @Dc;

vR;rR on @Qnc n @Dnc

8>>>>>><>>>>>>:
ð54Þ
use (49) and (51) in (25b), and append to the ADG formulation jump conditions for kinematic compatibility and momentum
balance on C:
ðv� � vatÞ 1� jnC � et jð Þ ¼ 0; ð55aÞ
r� � rat� �

ðnCÞ
		
C
¼ 0 ð55bÞ
. Representation of the four-atom trace in the reference configuration with the coupling boundary C at �x ¼ 0. A Lagrange polynomial is fit to the
es at time t of the four atoms nearest C. The trace vat is the restriction of the velocity interpolant to C. Because the atomic positions are fixed relative
another, d is the only free parameter available to minimize reflections; it alters the trace by moving C relative to the atoms.
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in which v� ¼ vRc and r� ¼ rRc. Then, combining the weak forms for the modified SDG and ADG methods, we obtain the weak
formulation of the coupled problem. Alternative methods, based on the weighted residual forms and/or the 1-field contin-
uum formulation, are also possible.

Problem 9 (Coupled SDG–ADG). Find the continuum solution ðu;v;EÞ 2 U � V � E, the atomic trajectories fðuc;vcÞg 2 eU � eV ,
and the boundary traction field rat 2 eS such that for each 3 Q 2 P
Z
Q
�rv̂ðrÞ þ _̂v � pþ v̂ � qb� v � ðr � r̂Þ þ Eð _̂rÞ � kQðu � _̂uþ v � ûÞ
n o

dXþ
Z
@Qnc

v̂ � r�ðnÞ þ v� � r̂ðnÞ½ � dR

þ
Z
@Qci

v̂ � p� þ E�ðr̂Þ � kQu� � ûð ÞdRþ
Z
@Qco

�v̂ � p� Eðr̂Þ þ kQu � ûð ÞdR ¼ 0 8ðû; v̂; bEÞ 2 U � V � E ð56Þ
and for each time interval In
X
c

Z
In

v̂c � Fc þ _̂vc � pc � vc � kcûc � uc � kc
_̂uc

h i
dt þ

X
c

v̂n
c � pn�1

c � un�1
c � kcûn

c

� �			
t¼tn�1

þ �v̂n
c � pn

c þ un
c � kcûn

c

� �			
t¼tn

� �

þ
Z

Cn

ðv� � vatÞ � r̂atðnCÞ þ v̂at � ðr� � ratÞðnCÞ
� �

dt ¼ 0 8 f ûc; v̂c
� �

g; r̂at� �
2 eU � eV� �

� eS ð57Þ
in which r̂ ¼ CbE.

Next, we consider the momentum and energy balance properties of the coupled SDG–ADG formulation. First, we note that
the proofs that linear and angular momentum balance with respect to r� and p� to within machine precision on a per-ele-
ment basis in the uncoupled SDG method are unaffected by the modified target values in (54); cf. Section 2.1.3. The proofs of
per-atom balance of momentum with respect to the atomic forces fFcg in the uncoupled ADG method are similarly unaf-
fected by the redefinition of the net atomic forces in (49) and (51); cf. Section 2.2.1. We have also shown that the coupling
forces fFr

cg are momentum equivalent to the coupling stresses rat on C. It only remains to show that rRc and the coupling
stresses rat are momentum equivalent. Consideration of all atomic velocity weightings in (57) of the form,
v̂c ¼
cþ SðxcÞ for c 2 GC;

0 otherwise;

�
ð58Þ
with fûcg ¼ f0g and r̂at ¼ 0, leads to the desired result for an n-atom trace, if n > 1. Thus, the coupled SDG–ADG solution
balances linear and angular momentum overall, as well as on a per-element and per-atom basis.

The energy error across the coupling interface is due solely to discrepancies in the jump terms involving ðvRc; rRcÞ and
either ðvat; r atÞ or the continuum traces ðv; rÞ. Since ðvat; ratÞ on C are energy-equivalent to ðfvcg; fFr

cgÞ on the atoms, we
conclude that the coupling part of the SDG–ADG method has the same stability and energy dissipation properties as the com-
ponent SDG and ADG methods.

2.4.4. Determining the atomic-scale shift
Specific values for the atomic-scale shift d must be determined in the SDG–ADG coupling method. Our studies show that

large spurious reflections generally result when the macroscopic continuum geometry and the microscopic atomic positions
are specified independently. However, spurious reflections are virtually eliminated when the relative positions of the cou-
pling interface and the atoms are properly adjusted at the scale of the atomic spacing. The shift parameter d in the atomistic
trace operator closes the atomic-scale geometry model, which would be ambiguous and incomplete without it.

Ideally, d would be determined by a systematic procedure as an automatic part of the solution process. To date, however,
we rely on a heuristic procedure for determining d as the value that minimizes spurious reflections in a test problem involv-
ing a pulse crossing an atomistic–continuum interface. The details of the calibration procedure are described, in the context
of concrete examples, as part of the numerical results presented in the following section. Typically, the optimal value of d is
sharply defined and easy to identify. Although the optimal value does depend on the number of atoms in the trace operator,
it is relatively insensitive to the shape of the pulse and the direction of wave travel (from atomistic to continuum or from
continuum to atomistic). Once a given model is calibrated, d can be set for all future runs with that model. Prospects for
a more systematic method for determining d are discussed in Section 4.

2.4.5. Iterative solution scheme for SDG–ADG method
We extend the overlapping block-Gauss–Seidel iterative solution scheme to address the coupled SDG–ADG system by

introducing a special coupling bin bC 2 fbigM
i¼1 such that G � bC . That is, we place all of the atoms involved in the atomistic

trace operator in a common bin. In the iterative solution process, solutions for the atoms in bC are updated simultaneously
with the continuum solution adjacent to the coupling interface. When a causal mesh is used to discretize the continuum, the
coupled update is localized to include only one layer of continuum elements along the coupling interface. The remainder of
the bins ðfbigM

i¼1 n bCÞ are updated in the same manner as described in Section 2.2.2. For each time step, iterative updates are
performed until the solution to Problem 9 converges to within a specified tolerance.
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3. Numerical results

This section presents numerical results that demonstrate the effectiveness and the convergence properties of the SDG–
ADG coupling scheme as well as the details of a heuristic method for optimizing the shift parameter d in the atomistic trace
operator. Unless otherwise noted, we use first-nearest-neighbor linear spring interactions in the atomistic model (second-
nearest-neighbor springs and the nonlinear Lennard-Jones potential are treated in some examples). All units are given in
terms of the atomistic quantities, a; K; F and c ¼ clw. In all cases, we match the mass densities of the component domains
and the wave speeds in the long-wavelength limit, so that the domains have the same impedance. One half of the problem
domain is comprised of continuum elements, the other half of atoms, with periodic boundary conditions and independent
coupling fields vat and rat at each AtC boundary. Thus, there is one coupling boundary at the center of the domain and one
that implements the periodic boundary condition. We again specify initial conditions for displacement and velocity corre-
sponding to a traveling pulse, as in (31), and we define the pulse width w as the support of the initial displacement data;
that is, w ¼ p=k. Adjusting the pulse width reveals a range of behaviors. A narrow pulse generates larger relative motion be-
tween adjacent atoms and stronger dispersive effects, while a broad pulse reduces the relative motion and the dispersion.

In this section, we fix the level of h- and p-enrichment in the SDG and ADG models in order to focus on the influence of
various physical model parameters on spurious reflections at the coupling interface. We choose element sizes and polyno-
mial orders to ensure sufficiently well-resolved solutions that discretization error has negligible impact on the coupling
model. Instead, we focus on the influence of parameters such as direction of wave motion, the pulse width, the value of
the shift parameter d and the number of atoms n participating in the trace operator for the atomistic velocity.

In Sections 3.1 and 3.2, we use the unmodified ADG model and the 1-field SDG method on a Cartesian-product spacetime
domain in 1d� time, as described in Section 2.1.1, with a constant time step Dt ¼ 0:5a=c. The polynomial bases for the rect-
angular spacetime elements in the continuum domain are tensor products of polynomial bases in x and t. The ADG displace-
ments (velocities) are interpolated with cubic (quadratic) polynomials. The SDG displacement field is third-order in time and
fourth-order in space. The coupling boundary traction is also cubic in time. As we are interested in obtaining the best pos-
sible coupling between the atomistic and continuum methods, and in view of the adaptive SDG method’s ability to resolve
very small length scales, we set the spatial density of atomistic and continuum d.o.f. to be the same, giving the spatial diam-
eter h ¼ 5a for the continuum elements.
3.1. Performance of the SDG–ADG coupling method

We consider a coupled SDG–ADG model with 20 continuum elements and 100 atoms and with pulses traveling in either
direction. The initial mechanical pulse starts at the center of the atomistic (continuum) domain and propagates to the center
of the continuum (atomistic) domain. We denote a pulse passing in this direction as A–C (C–A). For comparison purposes, we
also consider pure continuum and pure atomistic models for the same domain. Fig. 11 shows sample displacement profiles
for pure ADG, pure SDG and coupled SDG–ADG simulations based on 1- and 3-atom trace operators. The most prominent
feature in these plots is the spurious reflection off the coupling interface in the ADG–SDG model with the trivial 1-atom
trace, where vat is simply the velocity of the atom nearest the coupling interface. Since the distinct systems have perfectly
matched impedances, the spurious reflection is solely due to the physically inconsistent coupling. Comparing Fig. 11(c) and
(d), we see that the presence of the spurious reflection is largely independent of the direction of wave travel, whether A–C or
C–A. This response is qualitatively similar to that of a coupled mass–spring system with an overly stiff coupling spring, as
described in Section 2.3. The optimized 3-atom trace, on the other hand, largely attenuates the reflection. Another notable
feature in these plots is the accumulation of dispersion effects as the pulse traverses the atomistic domain. Although an
existing dispersion tail might follow the pulse as it crosses the continuum zone, dispersion effects will not continue to accu-
mulate. The contrast between the dispersive atomistic model and the non-dispersive continuum model is most pronounced
in Fig. 11(a) and (b), in which the wave form of the atomistic profile gradually changes due to dispersion.

System energy and momentum are conserved for SDG–ADG coupling to within the limits of the component methods. In
the case of momentum, the normalized, per time-step change in system momentum, remains at or below 10�13. This is with-
in machine precision, given that the condition numbers of the individual atom and element submatrices are estimated to be
Oð103Þ � Oð104Þ. We define the dissipative energy error as �eðtÞ ¼ ½Ei � EðtÞ�=Ei in which Ei and EðtÞ are the initial and current
total energies. The total energy is dissipative, as expected, since each component method is likewise dissipative. However,
the dissipation is quite small, as seen in Fig. 12, which displays time histories of the dissipative energy error for three sep-
arate calculations: A–C, C–A and a pure continuum calculation. The dissipation is larger in the continuum zone for the cur-
rent model parameters, so we can track the evolution of the pulse as it moves through the domain in the time histories. The
smooth transition in the energy as the pulse passes between the atomistic and continuum zones reflects the mathematical
compatibility of the SDG and ADG models.
3.2. Optimization of the parameter d to minimize spurious reflections

The shift parameter d in the n-atom trace operator can be optimized to minimize spurious reflections, in some suitable
measure, after the pulse entirely exits one domain and enters the other. Once again, the computation begins with the pulse
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centered in the atomistic or continuum region; it ends when the pulse reaches the center of the other region. Thus for an A–C
calculation, we seek the value of d that minimizes either the total energy, the l2-norm of the displacement error or the l2-
norm of the velocity error in the atomistic domain at the end of the calculation, all of which should vanish for perfectly cou-
pled methods:
Fig. 13.
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the total energy, the L2-norm of the displacement error or the L2-norm of the velocity error in the continuum domain at the
end of the calculation.

As shown in Fig. 13, the optimal value of d depends on the number of atoms in the trace operator. All of the proposed error
measures work well and yield the same optimal value of d to within an order of accuracy of 10�5 in the wide-pulse (long-
wavelength) limit. Notably, in this limit, the results are the same regardless of whether the pulse travels from the atomistic
to the continuum domain (A–C) or from the continuum to the atomistic domain (C–A). Indeed, the results are remarkably
consistent through most of the range of pulse widths, with significant deviations arising only when the pulse width ap-
proaches the lower-scale limit of continuum theory. Thus, for a given number of trace atoms, it appears that there is a
well-defined optimal value for d in the range of pulse widths where continuum modeling is meaningful. Therefore, it seems
reasonable to pre-compute and store the optimal value of d for reuse in a simulation, particularly if high-frequency contin-
uum response is to be addressed by some other method. Fig. 14 shows reflectance as a function of d for a pulse width of 50a
and for various values of n, the number of atoms in the trace operator. The optimal value of d that minimizes the reflected
energy is sharply defined for each value of n. The minima appear smooth when viewed on a non-log plot at higher magni-
fication. In the best case, reflectance is reduced by a factor greater than 104 relative to zero shift, and by still larger factors
when compared to non-optimal choices of d. The optimal values of d are not affected by the direction of wave travel.
Optimal values of shift parameter d for SDG–ADG method with 501 atoms and 100 elements with varying pulse width w in initial data. For each
idth and for each n-atom trace, the plot shows six different minimizations of reflections. For the pulse passing completely from the atomistic region
continuum (continuum region to the atomistic), the plot shows results for minimization of energy as well as for minimizations of l2-norms
ms) of the displacement and velocity in the atomistic (continuum) region. For specified w and n, the results for reflected energy and for l2-norm
m) of the velocity are indistinguishable at the scale of these plots.



Fig. 14. Reflectance (fraction of energy reflected) for SDG–ADG system, with 501 atoms, 100 continuum elements and pulse width w ¼ 50a, for varying shift
parameter d. The values of n indicate the number of atoms participating in the atomistic trace operator. The minima appear smooth in non-log plots of the
data.
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Fig. 15 shows the minimal reflected energy for different values of n and for various pulse widths, with the pulse traveling
either A–C or C–A. In the narrow-pulse limit, a distinction arises between the A–C and C–A results that can be attributed to
the effects of dispersion. The dispersion in the atomistic model is more pronounced for a narrow pulse, so a narrow pulse
arriving at the coupling boundary from the atomistic domain has a more oscillatory structure than a similar pulse arriving
from the continuum domain with zero dispersion.

The values for Ks given in Section 2.3.1 imply a length scale for multi-atom potentials and suggest that, given the relative
sizes of the spring constants, treating first- and second-nearest-neighbor spring interactions is sufficient. Fig. 16 displays
optimal values of d in a second-nearest-neighbor model as a function of the spring-constant ratio, K2=K1, for n ¼ 2;3;4.
Fig. 17 shows the fraction of reflected energy at the optimal value of d as a function of the spring-constant ratio for
n ¼ 1;2;3;4. The most consistent results and the most effective suppression of spurious reflectance are for n > 2, where
the smallest reflectance occurs in the vicinity of the first-nearest-neighbor system ðK2=K1 ¼ 0Þ. Overall, the SDG–ADG model
with optimized shift parameter and n > 1 robustly suppresses spurious reflections in second-nearest-neighbor systems, with
reflectance below 10�5 throughout the range of this study.
3.3. SDG–ADG coupling with causal adaptive meshing in the continuum zone

Ideally, the continuum model should be able to handle mechanical signals all the way down to the atomic limit, without
spurious energy losses due to non-physical damping. Some form of dynamic adaptive analysis and a scalable solution
Fig. 15. Study of reflectance versus pulse width for models with 501 atoms, lattice parameter a, 100 continuum elements, optimized d and n-atom trace
operators, for n ¼ 1;2; . . . ;6.



scheme are almost certainly needed to realize this objective. Here we demonstrate that the SDG–ADG AtC coupling method,
when implemented with causal h-adaptive meshing in the continuum region, is able to meet this requirement. It is as yet
unclear whether any other competing methods can do this. The adaptive meshing generates unstructured spacetime grids
that include inclined boundaries. Therefore, our implementation uses the general formulation of the SDG method, as de-
scribed in [24,26]. However, the AtC coupling boundary is always vertical in spacetime, so the coupling model described
in this paper remains valid for the adaptive solution. Our results demonstrate that the adaptive SDG–ADG method resolves
undamped atomic-scale signals in the continuum zone. It matches the atomistic and continuum time increments at the cou-
pling interface but does not impose this constraint globally on the continuum discretization.

We use Tent Pitcher [26–29], an advancing-front mesh generation procedure, to construct simplicial spacetime meshes
that satisfy a patch-wise causality constraint. A ‘patch’ is a small cluster of adjacent elements, and a patch boundary is a col-
lection of oriented facets in spacetime. A facet is causal if the characteristics all flow in the same direction across it. Tent
Pitcher meshes satisfy a causality constraint that requires all patch facets to be causal, except for those that lie on @Dnc.
Any patch that satisfies this requirement is called a causal patch. No global time step restriction is applied; however, the
causality constraint imposes a local condition similar to a CFL condition that limits the temporal duration of each patch.
Inter-element boundaries within a patch are permitted to be non-causal, so the elements within a patch must be solved
simultaneously. However, the solution within a patch depends only on solution data from earlier patches and on prescribed



Fig. 18. Time history of SDG–ADG (3-field/2-field with p ¼ 3) with h-adapsimulation uses 201 atoms with atomic spacing a (represented as dots onused with initial conditions given by (31)withB ¼ a= 400 and w¼ 20a. Horizontat¼ 100a=c represents the region where the continuum controls time stepping to resis overlain on the computational mesh at equally spaced time intervals ofDt¼20a=c.
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initial and boundary data. This asymmetric dependency implies a partial ordering of patches that enables an OðNÞ patch-by-
patch solution procedure wherein the mesh generation and solution processes are interleaved. Our adaptive meshing tech-
nique dynamically refines and coarsens the spacetime mesh based on a patch-level a posteriori error indicator that measures
energy dissipation. The adaptive meshing simultaneously adjusts the temporal and spatial element diameters, while circum-
venting the need for global remeshing operations. Adaptive remeshing is accomplished through special spacetime element
geometries that, unlike conventional remeshing procedures, preserve high-order accuracy by circumventing the need for
solution projections during remeshing. In summary, the causal adaptive solution procedure dramatically improves efficiency
by combining a scalable solution scheme with highly effective adaptive meshing.

Coupling along the boundary C for time interval In involves a causal patch of SDG elements with a vertical boundary on C
that spans In. The causal property uncouples this patch from all other unsolved SDG continuum elements, eliminating the
need for large implicit solves that involve the entire continuum domain. Only the causal patches adjacent to C need be solved
simultaneously with the atoms in the coupling bin bC in the iterative solution scheme; cf. Section 2.4.5. In the adaptive SDG–
ADG coupling model, either the continuum or the atomistic region can control the common time-step size on C, based on
accuracy requirements or causality constraints. The pulse data in (31) contains arbitrarily small wave lengths, so allowing
the continuum model to request time steps smaller than those required by the atomistics enables increased accuracy in
the present example. However, strong refinement on C is only required when a signal is passing from the ADG zone into
the SDG region.

Our first example demonstrates the use of h-adaptive causal meshing in the SDG–ADG method. We use the 3-field con-
tinuum SDG method, which is the mathematically consistent counterpart of the 2-field ADG method. The example uses the
same linear spring interactions used in Fig. 11 and the initial conditions given by (31) with B ¼ a=400. We use causal adap-
tive meshing in the continuum region. All solution fields, continuum and atomistic, are interpolated with cubic ðp ¼ 3Þ poly-
nomials. The wave pulse is carried through the atomistic domain into the continuum and back into the atomistic domain
through periodic boundary conditions. Fig. 18 shows the displacement solution at equally spaced time intervals of
Dt ¼ 20a=c overlaid on the computational mesh. The default atomistic time-step size is reduced, as indicated by the grey
band in the atomistic domain, only when the pulse is transmitted into the continuum region. In general, refinement is re-
quired only along the pulse trajectory where its high-frequency components must be resolved. No time-step reduction oc-
curs when the pulse re-enters the atomistic domain because numerical dissipation within the continuum domain suppresses
the pulse’s highest frequency modes. However, this does not indicate that the effectiveness of our coupling model depends
tive causal meshing in the continuum domain (left-hand side) in 1d � time. Theright-hand side) and a continuum length of 200a. Linear spring interactions arel grey lines in the atomistics depict time steps. The grey band centered atolve information as the pulse enters. The displacement solution (black)
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on numerical dissipation, since we have virtually reflection-free transmission when the pulse exits the atomistic zone with
its high-frequency modes intact.

The 1-field SDG formulation yields results (not shown) that are qualitatively the same as Fig. 18. However, all indepen-
dent fields in the 3-field SDG formulation converge as Oðhpþ1Þ for smooth solutions, compared with the reduced convergence
rate of OðhpÞ for stress and velocity in the 1-field formulation. To illustrate the impact of this difference on computational
efficiency, we consider the same problem used in Fig. 18 and use the final dissipative energy error as a simple error metric:
�e ¼ ðEi � EfÞ=Ei in which Ei and Ef are the total energies at the initial and final times of a simulation of one full cycle of the
pulse through the periodic domain. We study the relative efficiency of the 1-field and 3-field SDG formulations by varying
the element-wise error tolerance that controls the level of adaptive mesh refinement and plotting the error �e against the
CPU time taken for each simulation.

Fig. 19, compares the computational efficiency of the 1-field and 3-field continuum models in the SDG–ADG coupling
scheme with p ¼ 3. The optimal convergence rates of the 3-field formulation deliver superior efficiency once the solution
reaches the range of asymptotic convergence. The 1-field formulation with the same polynomial order requires more adap-
tive refinement to attain the same error level, making it more expensive for accurate simulations despite the fact that it has
three times fewer d.o.f. per element.

In our final example, we demonstrate the ability of the SDG–ADG coupling method to handle asymmetrical, fully nonlin-
ear potentials. We use a modified Lennard-Jones potential (30) with rc ¼ 2:5a, generating interactions out to two nearest-
neighbors. C1 continuity of the potential is enforced at the cut-off. The parameters R and � have been impedance matched
to the continuum domain. The nonlinear solution for each atomistic time step is computed with an iterative Newton–Raph-
son scheme that covers all the atoms plus the continuum SDG elements immediately adjacent to the coupling interfaces at
either end of the atomistic domain.

In contrast to the nearest-neighbor linear-spring case, atoms within rc of the coupling boundary are not in force equilib-
rium when the system is in its natural stress-free configuration unless we add balancing forces to atoms near the coupling
boundary to represent force interactions with the ‘missing’ atoms that have been replaced by the continuum model. These
are sometimes referred to as ghost forces [50]. These balancing forces are determined such that the entire coupled system is
in equilibrium in the absence of dynamic disturbances. These forces are taken to be time-independent for the results re-
ported here. We use the same initial data and geometry as in the previous example, and simulate one complete cycle of wave
propagation through the periodic domain. Fig. 20 shows the displacement solution at equally spaced time steps of
Dt ¼ 20a=c overlaid on the computational mesh. Due to the small amplitude pulse, this figure is directly comparable to
the results in Fig. 18.

We optimized the shift parameter d independently for different values of the adaptive tolerances and found that the level
of mesh adaptivity has very little effect on the optimal value of d. Generally, once d is determined (given a reasonable initial
adaptive tolerance), varying the error tolerance has very little impact on the reflectance. In fact, varying the adaptive toler-
ance by over two orders of magnitude while holding d fixed yields changes in the normalized reflected energy of Oð10�5Þ, an
amount that can be attributed to changes in the discrete solution space. Furthermore, the differences between these optimal
values of d and the comparable values for the structured meshes employed in Section 3.2 are of the order Oð10�5aÞ. We con-
clude that adaptive spacetime meshing allows the continuum model to resolve fully the signal it receives from the atomistic
model.
Fig. 19. Dissipative energy error �e versus CPU time for complete simulation up to t ¼ 400a=c for SDG–ADG model using 1- and 3-field SDG methods in the
continuum zone. We use p ¼ 3 for all fields. The adaptive tolerance for the per-element dissipation starts at 1� 10�10 and increases by 2:5� 10�10 for each
new datum. CPU time reflects time to completion of a simulation for a fixed value of the adaptive error tolerance.



Fig. 20. Time history of SDG–ADG (3-field/2-field with p ¼ 3) with causal adaptive meshing in the continuum domain (left-hand side) in 1d� time. The

simulation uses 201 atoms with atomics spacing a (represented as dots on right-hand side) and a continuum length of 200a. The modified Lennard-Jones

potential (30) is used, with initial conditions given by (31) with B ¼ a=400. Horizontal grey lines in the atomistics depict time steps. The grey band centered

at t ¼ 100a=c represents the region where the continuum controls time stepping to resolve information as the pulse enters. The displacement solution

(black) is overlain on the computational mesh at equally spaced time intervals of

Dt ¼ 20a=c.
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4. Conclusions and future work

4.1. Summary of results and findings

We have presented a novel method for concurrent coupling of atomistic and continuum models of dynamic mechanical
response in solids. Our approach combines the Spacetime Discontinuous Galerkin method for elastodynamics with its math-
ematically consistent discrete counterpart, the Atomistic Discontinuous Galerkin method. The SDG–ADG coupling strategy
derives directly from considerations of momentum balance and kinematic compatibility. Optimization of an atomic-scale
configuration parameter, a necessary ingredient of an unambiguous description of the atomic-scale geometry, dramatically
reduces spurious reflections at the coupling interface without resorting to overlap regions or artificial damping. The model
balances momentum, over individual elements and atoms and over the entire coupled system, to within the machine
precision.

The coupled and component models are unconditionally stable. Although they are dissipative, the amount of numerical
dissipation can be effectively controlled through adaptive solution procedures. They both offer the possibility of arbitrarily
high-order implementations on compact computational stencils.

A modification to the ADG formulation, described in Section 2.2.1, enforces per-atom energy balance to within the accu-
racy of the numerical quadrature of the force integral. The ADG method is an example of an implicit integrator, and these are
typically avoided in large-scale atomistic calculations due to the expense of solving a large coupled system of equations at
every time step. However, we have shown that the iterative ADG solution procedure introduced in Section 2.2.2 is a scalable
algorithm, since it solves the implicit ADG equations with linear computational complexity in the number of atoms. For the
class of problems under consideration here, involving the propagation of mechanical pulses in solids, the iterative ADG
scheme (with polynomial order greater than one) outperforms the explicit Velocity Verlet algorithm in terms of computa-
tional efficiency. Whether the iterative ADG method can be competitive with existing methods for more general MD appli-
cations is a question that requires, and merits, further investigation.

An atomistic trace operator defines an effective atomistic velocity on the coupling interface as a function of the velocities of
nearby atoms. The trace operator depends on parameters that specify the position of the coupling interface relative to the
atoms on the atomic scale. In addition, an auxiliary atomistic boundary stress is introduced that provides a bridge between
continuum stresses and atomistic forces and a means to enforce momentum balance between the distinct models. These
atomistic fields enter the coupling model through the weak enforcement of jump conditions written with respect to Riemann
solutions.
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When the SDG method is implemented with unstructured, causal meshing we obtain an OðNÞ, patch-by-patch solution
procedure. Spacetime mesh adaptation is handled locally without global remeshing operations and without error-inducing
projections of the solution from the old mesh onto the new mesh. Numerical examples in Section 3.3 show that h-adaptive
SDG continuum models can fully resolve atomistic signals, including dispersion effects, at scales approaching the atomistic
limit. The disparity in time and length scales between continuum and atomistic regions is reconciled through localized,
spacetime mesh refinement without imposing small time steps on the entire continuum domain. Although the adaptive
SDG model can resolve dynamic information down to sub-atomic length scales, there is a minimum length scale below
which continuum theory breaks down and fails to capture dispersion and other important features of the atomistic response.
Thus, the applicability of our elastodynamic model is restricted by the physical assumptions of continuum theory, but not by
limited numerical resolution.

The fact that the atomic-scale configuration parameter d can be optimized to suppress spurious reflections without intro-
ducing non-physical damping is a key finding of this work. We have shown that the optimal value of this parameter depends
on certain details of the coupling scheme, such as the number of atoms involved in the trace operator, but it is invariant with
respect to other model parameters, such as the direction of information propagation across the interface, pulse width and the
level of mesh refinement. It is widely understood that spurious reflections will occur in coupled AtC models unless the con-
tinuum and atomistic impedances are well matched and the continuum model is able to resolve the high-frequency content
of signals emanating from the atomistic zone. One of the more interesting findings in this study is that spurious reflections
can occur even when these requirements are met if the coupling itself is not properly optimized. Qualitatively, there appears
to be an effective impedance associated with the coupling interface itself that must be adjusted to match the rest of the
model.

With hindsight, it is perhaps surprising that one would attempt to seamlessly couple continuum and atomistic models
while leaving the atomic-scale gap between them to chance. For example, introducing a random gap in an otherwise uniform
atomic lattice will produce a reflective surface. This holds for real physics as well as for numerical MD models, as demon-
strated in Section 2.3.2. If a random gap causes physical reflections in a purely atomistic model, why should it not do the
same in a coupled AtC model? Thus, optimization of the shift parameter d is a physical, rather than numerical, solution to
the problem of spurious reflections.
4.2. Extensions and future research

A number of extensions to the coupled Spacetime Discontinuous Galerkin and Atomistic Discontinuous Galerkin methods
are under investigation in continuing work. The continuum model should be upgraded to address finite-deformation and
nonlinear material response. Extensions of both the continuum and atomistic models are required to address material re-
sponse at finite temperature. A hyperbolic heat conduction model is essential to capture continuum thermal response at
the length and time scales under consideration. An SDG model for hyperbolic conduction is described in [51], and a fully
hyperbolic thermomechanical model has been implemented and will be reported in a forthcoming paper. Atomistic-to-con-
tinuum coupling at finite temperature would utilize spatial and/or temporal filtering to separate longer-wavelength
atomistic modes that are well-resolved by the continuum model from those that are not. Energy associated with the
non-resolvable atomistic modes would enter the continuum model as a heat flux. Jump conditions for energy balance,
written with respect to Riemann solutions of the thermomechanical problem and in combination with the Generalized Equi-
partition Theorem [52], would provide the necessary thermomechanical AtC coupling.

The dissipative nature of the continuum SDG method is a disadvantage relative to recent energy–momentum formula-
tions [37] and to the modified ADG formulation in Section 2.2.2. We are currently investigating similar modifications to
the SDG method that would deliver per-element balance of energy and momentum in continuum elastodynamics. If success-
ful, these would extend existing energy–momentum methods to support unstructured, causal spacetime grids and to deliver
per-element energy and momentum balance.

An AtC coupling model in which a conventional explicit MD integrator is coupled to the continuum via the ADG model
might be of value in certain contexts where, for example, it is desirable to reuse an existing explicit MD code base. We devel-
oped a low-order ðp ¼ 1Þ SDG–ADG–VV coupling method along these lines. Although the method is viable, we found it to be
less attractive than the SDG–ADG model due to its relative complexity and because the inconsistent mathematical structures
of the ADG and VV algorithms corrupted the balance properties of the component methods. Once we established the superior
efficiency of the iterative, higher-order ADG methods relative to the VV algorithm, we found little reason to continue this line
of research.

While our implementation is so far limited to one spatial dimension, problems of physical interest must be modeled min-
imally in two and typically in three spatial dimensions. Since our formulation is dimension-independent, the challenges for
implementing SDG–ADG coupling in higher dimensions are of a technical, rather than fundamental, nature. For example, our
ADG implementation is general for d ¼ 1;2;3. Adaptive spacetime meshing in the continuum domain is the most significant
challenge. Robust, adaptive meshing software is available to support SDG models in 2d � time, and only modest modifica-
tions are needed to accommodate special meshing and solution requirements along AtC coupling interfaces. A two-dimen-
sional implementation of SDG–ADG coupling is currently under development. For problems posed in three spatial
dimensions, our non-adaptive spacetime meshing algorithms are provably robust, but certain parts of the theory that
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support adaptive spacetime meshing require further investigation. Thus, additional progress, in spacetime meshing theory
and technology, is required to realize a fully-adaptive SDG analysis capability in 3d� time.

At present, we use a heuristic technique to determine the position of the AtC coupling interface that minimizes spurious
reflections. Although we have good results using a fixed value for the shift parameter d, as determined in a calibration study,
it is possible that the optimal value of d might vary over time for problems with stronger nonlinearities. Thus, a more sys-
tematic approach that automatically determines the shift as an intrinsic part of the solution procedure is desirable. The fact
that d is a configuration parameter that must be specified to determine fully the problem geometry, suggests that its optimal
value might be determined by the Principle of Stationary Action. The smooth variation of the reflectance in the vicinity of the
optimal values of d, cf. Fig. 14, is also suggestive of a variational principle. We are investigating a variational reformulation of
the SDG–ADG method based on Hamilton’s principle in order to explore this possibility, and perhaps, to combine the advan-
tages of multi-symplectic methods with those of the SDG–ADG solution technology.

Adaptive identification of regions requiring atomistic modeling is another direction for continuing investigation. While
some existing techniques, such as the quasi-continuum method [12], provide a means to automatically determine where
the continuum and atomistic models should hold as a function of time, our current implementation of the SDG–ADG method
assumes that this decision is made a priori and is time-independent. However, in the context of other application domains
[53], we have demonstrated the ability of our adaptive spacetime meshing capabilities to nucleate new boundaries and to
track the evolution of interfaces in response to an evolving solution. Thus, the extension of the SDG–ADG method to auto-
matically nucleate atomistic domains and to track moving AtC interfaces is an interesting direction for further development.
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